Biology and Fertility of Soils

, Volume 45, Issue 1, pp 93–98 | Cite as

Litter N-content influences soil millipede abundance, species richness and feeding preferences in a semi-evergreen dry forest of Guadeloupe (Lesser Antilles)

  • Gladys Loranger-Merciris
  • Daniel Imbert
  • France Bernhard-Reversat
  • Patrick Lavelle
  • Jean-François Ponge
Short Communication

Abstract

Despite the impact of soil millipedes on litter fragmentation in tropical forests, there have been few studies dealing with factors determining their habitat preference in these ecosystems. In a natural secondary dry forest of Guadeloupe on Leptosol, two complementary studies were carried out in order to test the hypothesis that litter N-content strongly influences millipede distribution. Millipede abundance and species richness were described in the field under two tree species, Bursera simaruba and Pisonia subcordata, and were related to the chemical characteristics of their foliage. In addition, a laboratory experiment was done in order to assess millipede feeding preferences regarding the chemical characteristics of leaves from various species. Millipede abundance and species richness were significantly higher under P. subcordata than under B. simaruba, probably due to the higher N content of P. subcordata leaves. Moreover, millipedes fed preferentially on N-rich leaves. The present study confirms that there was a close correlation between the preferred food, its chemical composition and the local distribution of millipede populations.

Keywords

Diplopoda Dry tropical forest Feeding preferences Litter quality Single tree effect 

References

  1. Anderson JM, Ingram JSI (1993) Tropical Soil Biology and Fertility: a handbook of methods, 2nd edn. CAB International, OxonGoogle Scholar
  2. Aouti A (1978) Etude comparée des peuplements de myriapodes diplopodes d’une forêt hygrophile et d’une plantation d’Hévéa en Basse Côte d’Ivoire. Ann Univ Abidjan Ecol 11:7–32Google Scholar
  3. Ashwini KS, Sridhar KR (2005) Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems. Pedobiologia (Jena) 49:307–316 doi:10.1016/j.pedobi.2005.02.002 CrossRefGoogle Scholar
  4. Ashwini KS, Sridhar KR (2006) Seasonal abundance and activity of pill millipedes (Arthrosphaera magna) in mixed plantation and semi-evergreen forest of southern India. Acta Oecol 29:27–32 doi:10.1016/j.actao.2005.07.005 CrossRefGoogle Scholar
  5. Beard JS (1944) Climax vegetation in tropical America. Ecology 25:127–158 doi:10.2307/1930688 CrossRefGoogle Scholar
  6. Cole L, Bradford MA, Shaw PJA, Bardgett RD (2006) The abundance, richness and functional role of soil meso- and macrofauna in temperate grassland. A case study. Appl Soil Ecol 33:186–198 doi:10.1016/j.apsoil.2005.11.003 CrossRefGoogle Scholar
  7. David JF (1986) Influence de la durée du séjour dans la litière des feuilles mortes de chêne (Quercus petraea Liebl.) sur la consommation par le Diplopode Cylindroiulus nitidus (Verhoeff, 1891). CR Acad Sci Paris Sci Vie 302:379–381Google Scholar
  8. Driessen P, Deckers J, Spaargaren O, Nachtergaele F (2001) Lecture notes on the major soils of the world. FAO, RomeGoogle Scholar
  9. Fairhurst C (1974) The adaptative significance of variations in the life-cycles of Schizophiline millipedes. In: Blower JG (ed) Myriapoda. Zoological Society of London, London, pp 575–587Google Scholar
  10. Gilbert F, Gonzalez A, Evans-Freke I (1998) Corridors maintain species richness in the fragmented landscapes of a microecosystem. Proc R Soc Lond B Biol Sci 265:577–582 doi:10.1098/rspb.1998.0333 CrossRefGoogle Scholar
  11. Harbone JB (1997) Role of phenolic secondary metabolites in plants and their degradation in nature. In: Cadish G, Giller KE (eds) Driven by Nature: plant litter quality and decomposition. CAB International, London, pp 67–74Google Scholar
  12. Hopkin SP, Read HJ (1992) The Biology of Millipedes. Oxford University Press, OxfordGoogle Scholar
  13. Imbert D, Portecop J (1992) La forêt tropicale semi-décidue de la Guadeloupe: structures spatiales et production de litière dans la région nord de la Grande-Terre. In: Pérennité et évolution de la flore des Caraïbes. Conservatoire des Jardins et Paysages, Terre-de-Haut, pp 52–70Google Scholar
  14. Imbert D, Portecop J (2008) Hurricane disturbance and forest resilience: assessing structural vs. functional changes in a Caribbean dry forest. For Ecol Manage 255:3494–3501 doi:10.1016/j.foreco.2008.02.030 CrossRefGoogle Scholar
  15. Lavelle P, Kohlmann B (1984) Etude quantitative de la macrofaune du sol dans une forêt tropicale humide du Mexique (Bonampak, Chiapas). Pedobiologia (Jena) 27:377–393Google Scholar
  16. Lavelle P, Pashanasi B (1989) Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia (Jena) 33:283–291Google Scholar
  17. Lavelle P, Spain AV (2001) Soil Ecology. Kluwer, AmsterdamGoogle Scholar
  18. Loranger G (2001) Formes d’humus originales dans une forêt semi-décidue de la Guadeloupe. CR Acad Sci Paris Sci Vie 324:725–732Google Scholar
  19. Loranger G, Ponge JF, Lavelle P (2003) Humus forms in two secondary semi-evergreen tropical forest stands. Eur J Soil Sci 54:17–24 doi:10.1046/j.1365-2389.2003.00500.x CrossRefGoogle Scholar
  20. Loranger-Merciris G, Imbert D, Bernhard-Reversat F, Ponge JF, Lavelle P (2007) Soil fauna abundance and diversity in a secindary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species. Biol Fertil Soils 44:269–276 doi:10.1007/s00374-007-0199-5 CrossRefGoogle Scholar
  21. Mangenot F, Toutain F (1981) Les Litières. In: Pesson P (ed) Actualités d’écologie forestière. Gauthier-Villars, Paris, pp 3–59Google Scholar
  22. Marigo G (1973) Sur une méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analusis 2:106–110Google Scholar
  23. Mauriès JP (1980) Diplopodes Chilognates de la Guadeloupe et ses dépendances. Bull Mus Natl Hist Nat 2:1059–1111Google Scholar
  24. Palm CA, Rowland AP (1997) A minimum dataset for characterization of plant quality for decomposition. In: Cadish G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB, London, pp 379–392Google Scholar
  25. Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 93:297–388Google Scholar
  26. Ponge JF (1999) Interactions between earthworms, litter and trees in an old-growth beech forest. Biol Fertil Soils 29:360–370 doi:10.1007/s003740050566 CrossRefGoogle Scholar
  27. Sakwa WN (1974) A consideration of the chemical basis of food preference in millipedes. Symp Zool Soc Lond 32:329–346Google Scholar
  28. Satchell JE, Lowe DG (1967) Selection of leaf litter by Lumbricus terrestris. In: Graff O, Satchell JE (eds) Progress in Soil Biology. North Holland Company, Amsterdam, pp 102–119Google Scholar
  29. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Blackwell, OxfordGoogle Scholar
  30. Van der Drift J (1965) The effects of animal activity in the litter layer. In: Hallworth EG, Crawford DV (eds) Experimental Pedology. Butterworths, London, pp 227–235Google Scholar
  31. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for determination of fiber and lignin. J Assoc Off Anal Chem 46:829–835Google Scholar
  32. Warren W, Zou X (2002) Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. For Ecol Manage 170:161–171 doi:10.1016/S0378-1127(01)00770-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gladys Loranger-Merciris
    • 1
    • 2
  • Daniel Imbert
    • 2
  • France Bernhard-Reversat
    • 1
  • Patrick Lavelle
    • 1
  • Jean-François Ponge
    • 3
  1. 1.Laboratoire d’Ecologie des Sols Tropicaux, UMR 137 BIOSOLUniversité Pierre et Marie Curie-Paris 6/IRDBondy CedexFrance
  2. 2.Laboratoire de Biologie et de Physiologie Végétales, EA 926 DYNECARUniversité des Antilles et de la GuyanePointe à Pitre CedexFrance
  3. 3.CNRS UMR 7179Muséum National d’Histoire NaturelleBrunoyFrance

Personalised recommendations