Biology and Fertility of Soils

, Volume 45, Issue 2, pp 155–164 | Cite as

Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L.

  • Wei-An Lai
  • P. D. Rekha
  • A. B. Arun
  • Chiu-Chung Young
Original Paper


Benefits from the application of plant growth-promoting bacteria in agriculture largely depend on the complex interactions between several factors including the nature of fertilizers selected. This study was designed to determine the fine tuning between the inoculated bacteria and different fertilizers and their effect on the growth of lettuce plants (Lactuca sativa L.). Plant growth promotion by a novel species of the genus Azospirillum, namely A. rugosum IMMIB AFH-6, was tested by biochemical, bioassay, and greenhouse studies. The treatments used in the greenhouse study were; unfertilized control (Blank), half recommended dose of chemical fertilizer (1/2CF), full recommended dose of chemical fertilizer (1CF), pig manure fertilizer (PMF), pig manure fertilizer + half recommended dose of chemical fertilizer (PMF + 1/2CF), and pig manure fertilizer + full recommended dose of chemical fertilizer (PMF + 1CF). All these treatments when inoculated with A. rugosum IMMIB AFH-6 inoculation were, respectively, In-Blank, In-1/2CF, In-1CF, In-PMF, In-PMF + 1/2CF, and In-PMF + 1CF. Significant increase in plant biomass and shoot N, P, Ca, and Fe was shown in the In-Blank treatment. Plant growth in soil amended with PMF and A. rugosum IMMIB AFH-6 was significantly lower than in soil treated with the chemical fertilizer, but inoculation combined with chemical fertilizer significantly elevated the plant biomass. The In-PMF + 1/2CF treatment showed the highest yield. A. rugosum IMMIB AFH-6 facilitated the accumulation of trace minerals in higher concentrations when PMF was combined with 1CF. To examine the benefits of inoculation by A. rugosum IMMIB AFH-6, we have proposed a new type of data analysis which considers both biomass and nutrient content of plants. This new type of analysis has shown the importance of the mineral content of plant.


Azospirillum Plant growth promotion Chemical fertilizer Organic fertilizer N2 fixation Mineral accumulation 



This research work was supported by grants from the National Science Council of Taiwan, R.O.C. and Council of Agriculture, Executive Yuan, Taiwan, R.O.C. The authors thank the editor and the anonymous reviewers for their valuable suggestions which, to a great extent, contributed to the improvement and completeness of this paper.


  1. Adegbidi HG, Briggs RD, Volk TA, White EH, Abrahamson LP (2003) Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass Bioenergy 25:389–398 doi: 10.1016/S0961-9534(03)00038-2 CrossRefGoogle Scholar
  2. Alvarez R, Evans LA, Milham PJ, Wilson MA (2004) Effect of humic material on the precipitation of calcium phosphate. Geoderma 118:245–260 doi: 10.1016/S0016-7061(03)00207-6 CrossRefGoogle Scholar
  3. Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246–256 doi: 10.1007/s003740050549 CrossRefGoogle Scholar
  4. Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as challenge for agriculture. Can J Microbiol 36:591–608Google Scholar
  5. Bashan Y, de-Bashan LE (2005) Bacteria/Plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment vol. 1. Elsevier, Oxford, pp 103–115Google Scholar
  6. Bashan Y, Ream Y, Levanony H, Sade A (1989) Nonspecific responses in plant growth, yield, and root colonization of non-cereal crop plants to inoculation with Azospirillum brasilense Cd. Can J Bot 67:1317–1324 doi: 10.1139/b89-175 CrossRefGoogle Scholar
  7. Bashan Y, Kentharrison S, Whitmoyer RE (1990) Enhanced growth of wheat and soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl Environ Microbiol 56:769–775PubMedGoogle Scholar
  8. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577 doi: 10.1139/w04-035 PubMedCrossRefGoogle Scholar
  9. Bashan Y, Bustillos JJ, Levya LA, Hernandez J-P, Bacilio M (2006) Increase in auxillary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils 42:279–285 doi: 10.1007/s00374-005-0025-x CrossRefGoogle Scholar
  10. Ben-Dor E, Banin A (1989) Determination of organic matter content in arid-zone soils using a simple loss-on-ignition method. Commun Soil Sci Plant Anal 20:1675–1695Google Scholar
  11. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by Rhizobacteria. Curr Opin Plant Biol 4:343–350 doi: 10.1016/S1369-5266(00)00183-7 PubMedCrossRefGoogle Scholar
  12. Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432 doi: 10.1007/s00114-002-0347-6 PubMedCrossRefGoogle Scholar
  13. Cooperband LR, Stone AG, Fryda MR, Ravet JL (2003) Relating compost measures of stability and maturity to plant growth. Compost Sci Util 11:113–124Google Scholar
  14. Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905 doi: 10.1007/s00425-003-1172-7 PubMedCrossRefGoogle Scholar
  15. Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Punarulo S et al (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303 doi: 10.1007/s00425-005-1523-7 PubMedCrossRefGoogle Scholar
  16. Dobbelaere S, Crooneborghs A, Thys A, Ptacek D, Okon Y, Vanderleyden J (2002) Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol Fertil Soils 36:284–297 doi: 10.1007/s00374-002-0534-9 CrossRefGoogle Scholar
  17. Dobereiner J, Marriel IE, Nory M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473PubMedCrossRefGoogle Scholar
  18. Faithfull NT (2002) Methods in agricultural chemical analysis: a practical handbook. CABI, WallingfordGoogle Scholar
  19. Glick BR (2004) Bacterial ACC-deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312PubMedCrossRefGoogle Scholar
  20. Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195PubMedCrossRefGoogle Scholar
  21. Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees, isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiol Ecol 101:207–216CrossRefGoogle Scholar
  22. Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PHE (2005) Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J Trace Elem Med Biol 19:91–95 doi: 10.1016/j.jtemb.2005.03.002 PubMedCrossRefGoogle Scholar
  23. Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Kulikov LA, Perfiliev YD et al (2006) Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. Anal Chim Acta 573–574:445–452 doi: 10.1016/j.aca.2006.04.041 PubMedCrossRefGoogle Scholar
  24. Larcher M, Muller B, Mantelin S, Rapior S, Cleyet-Marel J-C (2003) Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytol 160:119–125 doi: 10.1046/j.1469-8137.2003.00862.x CrossRefGoogle Scholar
  25. Lee SE, Ahn HJ, Youn SK, Kim SM, Jung KW (2000) Application effect of food waste compost abundant in NaCl on the growth and cationic balance of rice plant in paddy soil. J Korean Soc Soil Sci Fertil 33:100–108Google Scholar
  26. Lippmann B, Leinhos VB, Bergmann H (1995) Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops I. Change in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indole 3–acetic acid (IAA) producing Pseudomonas and Azotobacter strains or IAA applied exogenously. Angew Bot 69:31–36Google Scholar
  27. Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability impacts on root development and nitrate uptake. J Exp Bot 55:27–34 doi: 10.1093/jxb/erh010 PubMedCrossRefGoogle Scholar
  28. Milagres AFM, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6 doi: 10.1016/S0167-7012(99)00028-7 PubMedCrossRefGoogle Scholar
  29. Molina-Fevero C, Creus CM, Lanteri ML, Correa-Aragunde N, Lombardo MC, Barassi CA et al (2007) Nitric oxide and plant growth promoting rhizobacteria: common features influencing root growth and development. Adv Bot Res 46:1–33CrossRefGoogle Scholar
  30. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270 doi: 10.1111/j.1574-6968.1999.tb13383.x PubMedCrossRefGoogle Scholar
  31. Nelson LM (1987) Variations in the Rhizobium leguminosarum response to short-term application of NH4NO3 to nodulated Pisum sativum L. Plant Soil 98:275–284 doi: 10.1007/BF02374831 CrossRefGoogle Scholar
  32. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years’ worldwide field inoculation. Soil Biol Biochem 26:1591–1601 doi: 10.1016/0038-0717(94)90311-5 CrossRefGoogle Scholar
  33. Okon Y, Vanderleyden J (1997) Root associated Azospirillum species can stimulate plants. ASM News 63:366–370Google Scholar
  34. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC-deaminase containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15 doi: 10.1034/j.1399-3054.2003.00086.x PubMedCrossRefGoogle Scholar
  35. Rodriguez-Caceres EA (1982) Improved medium for isolation of Azospirillum sp. Appl Environ Microbiol 44:990–991Google Scholar
  36. Schloter M, Bach HJ, Metz S, Sehy U, Munch JC (2003) Influence of precision farming on the microbial community structure and functions in nitrogen turnover. Agric Ecosyst Environ 98:295–304 doi: 10.1016/S0167-8809(03)00089-6 CrossRefGoogle Scholar
  37. Seshadri S, Muthukumarasamy R, Lakshminarasimhan C, Ignacimuthu S (2000) Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr Sci 79:565–567Google Scholar
  38. Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unraveling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393 doi: 10.1016/j.tim.2004.06.008 PubMedCrossRefGoogle Scholar
  39. Stat Soft Inc. (1998) STATISTICA for Windows (computer program manual). Stat Soft, Inc., TulsaGoogle Scholar
  40. Tanner JW, Anderson IC (1964) External effect of combined nitrogen on nodulation. Plant Physiol 39:1039–1043PubMedGoogle Scholar
  41. Thompson W, Leege P, Milner P, Watson M (2002) Test methods for the examination of composts and composting. The US Composting Council, HauppaugeGoogle Scholar
  42. Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37:174–178 doi: 10.1046/j.1472-765X.2003.01373.x PubMedCrossRefGoogle Scholar
  43. Tranbarger TJ, Al-Ghazi Y, Muller B, Teyssendier de la Serve B, Doumas P, Touraine B (2003) Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana. Plant Cell Environ 26:459–469 doi: 10.1046/j.1365-3040.2003.00977.x CrossRefGoogle Scholar
  44. Vanotti MB, Millner PD, Hunt PG, Ellison AQ (2005) Removal of pathogen and indicator microorganisms from liquid swine manure in multi-step biological and chemical treatment. Bioresour Technol 96:209–214 doi: 10.1016/j.biortech.2004.05.010 PubMedCrossRefGoogle Scholar
  45. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586 doi: 10.1023/A:1026037216893 CrossRefGoogle Scholar
  46. Wang P, Changa CM, Watson E, Dick WA, Chen Y, Hoitink HAJ (2004) Maturity indices for composted dairy and pig manures. Soil Biol Biochem 36:767–776 doi: 10.1016/j.soilbio.2003.12.012 CrossRefGoogle Scholar
  47. Wu L, Ma LQ (2002) Relationship between compost stability and extractable organic carbon. J Environ Qual 30:222–228CrossRefGoogle Scholar
  48. Young CC, Hupfer H, Siering C, Ho MJ, Arun AB, Lai W-A et al (2008) Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58:959–963 doi: 10.1099/ijs.0.65065-0 PubMedCrossRefGoogle Scholar
  49. Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534 doi: 10.1073/pnas.96.11.6529 PubMedCrossRefGoogle Scholar
  50. Zibilske LM (1994) Carbon mineralization. In: Weaver RW, Angle S, Bottomley P (eds) Methods of soil analysis Part 2. Microbiological and biochemical properties. SSSA, Madison, pp 835–863Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Wei-An Lai
    • 1
  • P. D. Rekha
    • 1
  • A. B. Arun
    • 1
  • Chiu-Chung Young
    • 1
  1. 1.Department of Soil and Environmental SciencesNational Chung Hsing UniversityTaiwanRepublic of China

Personalised recommendations