Skip to main content

Advertisement

Log in

Green manure effects on soil quality in relation to suppression of Verticillium wilt of potatoes

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Verticillium dahliae is a major, persistent pathogen in soil but conventional control is becoming more difficult because of increasing costs and environmental impacts of pesticides. Organic amendments can naturally suppress plant diseases, but to be reliable, mechanisms and suppressive soil indicators need to be understood. Consequently, a 3 × 3 factorial experiment was conducted in two separate fields over 2 years with three green manure types (Austrian winter pea, Pisum sativum L.; broccoli Brassica oleracea L.; or Sudan grass, Sorghum vulgare), incorporated at three rates (6, 12, or 24 Mg ha−1 dry biomass). The relationship between soil chemical and microbiological properties and suppression of Verticillium wilt of potato was investigated using correlation and stepwise multiple-linear-regression (MLR) analysis. V. dahliae inoculum density (ID) were positively correlated with relative area under the senescence progress curve (RAUSPC) in both 2002 and 2003. In 2002, in addition to ID, low soil pH, low Ca, high K, high Mg, high total soil C, and low arylsulfatase activity were associated with low RAUSPC. Soil pH, Ca, K, and Mg were not impacted by green manure treatments, but rather indicated a pre-existing soil gradient at the 2002 site. In 2003, in addition to ID, high values of NO3−N, total C, fluorescein diacetate hydrolysis (FDA), microbial respiration, and microbial biomass C were associated with low RAUSPC. These six factors were affected by green manure treatments. The best MLR model included terms for ID, FDA, and soil pH, and accounted for 70% of the variability in RAUSPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Razek O, Satour M, Sabet KK, Abdel-Ghafour SME (1991) In vitro studies of Verticillium dahliae causing tomato wilt. Egypt J Agric Res 69:637–650

    Google Scholar 

  • Ashworth LJ, McCutcheon OD, George AG (1972) Verticillium albo-atrum; the quantitative relationship between inoculum density and infection of cotton. Phytopathology 62:901–903

    Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  • Berlanger IE (2000) Effect of broccoli green manure soil solarization and isolates of Verticillium dahliae on verticillium wilt of agronomic and nursery crops. MS thesis, Oregon State University Corvallis

  • Boehm MJ, Hoitink HAJ (1992) Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia. Phytopathol 82:259–264

    Article  Google Scholar 

  • Boehm MJ, Wu T, Stone AG, Kraakman B, Iannotti DA, Wilson GE, Madden LV, Hoitink HAJ (1997) Cross-polarized magic-angle spinning 13C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable species composition and sustained biological control of Pythium root rot. Appl Environ Microbiol 63:162–168

    PubMed  CAS  Google Scholar 

  • Bremner JM (1965) Inorganic forms of nitrogen. In: Black CA (ed) Methods of soil analysis part 2: agronomy 9. Am Soc of Agron, Madison WI, pp 1179–1237

    Google Scholar 

  • Butterfield E, DeVay JE (1977) Reassessment of soil assays for Verticillium dahliae. Phytopathology 67:1073–1078

    Google Scholar 

  • Cespedes LMC, Stone A, Dick RP (2006) Organic soil amendments: impacts on snap bean common root rot and soil quality. Appl Soil Ecol 31:199–210

    Article  Google Scholar 

  • Conn KL, Lazarovits G (1999) Impact of animal manures on Verticillium wilt, potato scab and soil microbial populations. Can J Plant Pathol 21:81–92

    Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. APS Press, St Paul

    Google Scholar 

  • Davis JR, Everson DO (1986) Relation of Verticillium dahliae in soil and potato tissue irrigation method and N-fertility to Verticillium wilt of potato. Phytopathology 76:730–736

    Google Scholar 

  • Davis JR, Huisman, OC Westermann DT, Sorensen LH, Schneider AT, Stark JC (1994a) The influence of cover crops on the suppression of Verticillium wilt of potato. In: Zehnder GW, Powelson ML, Jannson RK, Ramay KV (eds) Advances in potato pest biology and management. APS, St Paul, MN, pp 332–341

    Google Scholar 

  • Davis JR Stark JC, Sorensen LH, Schneider AT (1994b) Interactive effects of nitrogen and phosphorus on Verticillium wilt of Russet Burbank potato. Am Potato J 71:467–481

    Article  Google Scholar 

  • Davis JR, Huisman OC, Westermann DT, Hafez SL, Everson DO, Sorensen LH, Schneider AT (1996) Effects of green manures on Verticillium wilt of potato. Phytopathology 86:444–453

    Article  Google Scholar 

  • Davis JR, Huisman OC, Westermann DT, Everson DO, Schneider AT, Sorensen LH (1999a) Control of Verticillium wilt of the Russet Burbank potato with corn and barley. Am J Potato Res 76:367 (abstract)

    Google Scholar 

  • Davis JR, Huisman OC, Westermann DT, Everson DO, Schneider AT, Sorensen LH (1999b) Increased yield and quality of Russet Burbank with Sudan grass and associations with soil nutrients. Am J Potato Res 76:367 (abstract)

    Google Scholar 

  • Davis JR, Huisman OC, Everson DO, Schneider AT (2001) Verticillium wilt of potato: a model of key factors related to disease severity and tuber yield in Southeastern Idaho. Am J Potato Res 78:291–300

    Google Scholar 

  • DeVay JE, Forester LL, Garber RH, Butterfield EJ (1974) Characteristics and concentration of propagules of Verticillium dahliae in air-dried field soils in relation to prevalence of Verticillium. Phytopathology 64:22–29

    Google Scholar 

  • Dissanayake N, Hoy JW (1999) Organic material soil amendment effects on root rot and sugarcane growth and characterization of the materials. Plant Dis 83:1039–1046

    Article  Google Scholar 

  • Easton GD, Nagle ME (1987) Verticillium wilt control and enhanced potato production following cropping with green pea–sudangrass rotation. Can J Plant Pathol 9:80 (Abstr)

    Google Scholar 

  • Elmer WH, Stoner KA, LaMondia JA, Ferrandino FJ, Gent MPN (1995) Effect of straw and composts on early dying and Colorado potato beetle of potato. Plant Dis 10:96

    Google Scholar 

  • Francl LJ, Madden LV, Rowe RC, Riedel RM (1987) Potato yield loss prediction and discrimination using preplant population densities of Verticillium dahliae and Pratylenchus penetrans. Phytopathology 77:579–583

    Article  Google Scholar 

  • Gaudreault SM, Powelson ML, Christensen NW, Crowe FJ (1995) Soil water pressure and Verticillium dahliae interactions on potato. Phytopathology 85(12):1542–1546

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Höper H, Alabouvette C (1996) Importance of physical and chemical soil properties in the suppressiveness of soils to plant diseases. Eur J Soil Biology 32:41–58

    Google Scholar 

  • Huisman OC (1988) Colonization of field-grown cotton roots by pathogenic and saprophytic soilborne fungi. Phytopathology 8:716–722

    Article  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) Effects of biocidal treatments on metabolism in soil V. A method for measuring the soil biomass. Soil Biol Biochem 8:209–213

    Article  CAS  Google Scholar 

  • Khan A, Atialentja N, Eastburn DM (2000) Influence of inoculum density of Verticillium dahliae on root discoloration of horseradish. Plant Dis 84:309–315

    Article  Google Scholar 

  • LaMondia JA, Gent MPN, Ferrandino FJ, Elmer WH, Stoner KA (1999) Effect of compost amendment or straw mulch on potato early dying disease. Plant Dis 83:361–366

    Article  Google Scholar 

  • Lumsden RD, Lewis JA, Millner PD (1983) Effect of composted sewage sludge on several soil-borne pathogen diseases. Phytopathology 73:1543–1548

    Article  Google Scholar 

  • MacRae RJ, Mehuys GR (1985) The effect of green manuring on the physical properties of temperate-area soils. Adv Soil Sci 3:71–94

    Google Scholar 

  • Myers DF, Campbell RN (1985) Lime and the control of clubroot of crucifers: effects of pH calcium magnesium and their interactions. Phytopathology 75:670–673

    Article  CAS  Google Scholar 

  • Nagatzaam MPM, Termorshuizen AJ, Bollen GJ (1997) The relationship between soil inoculum density and plant infection as a basis for a quantitative bioassay of Verticillium dahliae. Eur J Plant Pathol 103:597–605

    Article  Google Scholar 

  • Ndiaye EL, Sandeno JM, McGrath D, Dick RP (2000) Integrative biological indicators for detecting change in soil quality. Am J Alternative Agric 15:26–36

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon organic carbon and organic matter. In: Bingham JM (ed) Methods of soil analysis part 3: chemical methods. SSSA Inc, Madison, WI, pp 961–1010

    Google Scholar 

  • Nicot PC, Rouse DI (1987) Relationship between soil inoculum density of Verticillium dahliae and systemic colonization of potato stems in commercial fields over time. Phytopathology 77:1346–1355

    Article  Google Scholar 

  • Ochiai N, Powelson ML, Dick RP, Crowe FJ (2007) Effects of green manure type and amendment rate on Verticillium wilt severity and yield of Russet Burbank potato. Plant Dis 91:400–406

    Article  Google Scholar 

  • Parks RL (1998) Influence of Sudangrass green manure on microorganisms and early dying of potatoes in two soils. MS thesis, Oregon State University Corvallis

  • Pegg GF, Brady BL (2002) Verticillium wilts. CABI Publishing CAB International, Wallingford UK

    Google Scholar 

  • Presley JT, Dick JB (1951) Fertilizer and weather affect Verticillium wilt Mississippi. Farm Res 14:1–6

    Google Scholar 

  • Rotenburg D, Cooperband L (2002) Disease incidence and severity in potatoes grown in composts and paper mill residual In: Proc Wisc Annu Potato Meetings 2002, Stevens Point WI, pp 47–52

  • Rowe RC, Powelson ML (2002) Potato early dying: management challenges in a changing production environment. Plant Dis 86:1184–1193

    Article  Google Scholar 

  • Sarwar M, Kirkegaard, JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of brasicas III In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201:103–112

    Article  CAS  Google Scholar 

  • SAS institute (1999) SAS online doc version 8 [Online] http://wwwidunizhch/software/unix/statmath/sas/sasdoc/ (verified 29 May 2004) SAS Institute Inc, Cary NC USA

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. App Environ Microb 43:1256–1261

    Google Scholar 

  • Schutter ME, Dick RP (2001) Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol Biochem 33:1481–1491

    Article  CAS  Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    CAS  Google Scholar 

  • Snyder WC, Smith SN (1981) Current status. In: Mace ME, Bell AA, Beckman CH (eds) Fungal wilt diseases of plants. Academic, London, England, pp 25–50

    Google Scholar 

  • Sorensen LH, Schneider AT, Davis JR (1991) Influence of sodium polygalacturonate sources and improved recovery of Verticillium spp from soil. (Abstr) Phytopathology 81:1347

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York NY

    Google Scholar 

  • Subbarao KV, Hubbard JC, Koike ST (1998) Evaluation of broccoli residue incorporation in field soil for Verticillium wilt control in cauliflower. Plant Dis 83:124–129

    Article  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis Part 2: microbiological and biochemical properties. SSSA, Madison, WI, pp 775–833

    Google Scholar 

  • Tenuta M, Conn KL, Lazarovitz G (2002) Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92:548–552

    Article  CAS  PubMed  Google Scholar 

  • Termorshuizen AJ, Davis JR, Gort G, Harris DC, Huisman OC, Lazarovits G, Locke T, Melero Vara JM, Mol L, Paplomatas EJ, Platt HW, Powelson M, Rouse DI, Rowe RC, Tsror L (1998) Interlaboratory comparison of methods to quantify microsclerotia of Verticillium dahliae in soil. Appl Environ Microbiol 64:3846–3853

    PubMed  CAS  Google Scholar 

  • van Bruggen AHC, Grunwald NJ (1996) Test for risk assessment of root infections by plant pathogens. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA, Madison WI, pp 293–310

    Google Scholar 

  • van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Applied Soil Ecol 15:13–24

    Article  Google Scholar 

  • Voroney RP, Paul EA (1984) Determination of k c and k N in situ for calibration of the chloroform fumigation-incubation method. Soil Biol Biochem 16:9–14

    Article  CAS  Google Scholar 

  • Wilhelm S (1951) Effect of various soil amendments on the inoculum potential of the Verticillium wilt fungus. Phytopathology 41:684–690

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochiai, N., Powelson, M.L., Crowe, F.J. et al. Green manure effects on soil quality in relation to suppression of Verticillium wilt of potatoes. Biol Fertil Soils 44, 1013–1023 (2008). https://doi.org/10.1007/s00374-008-0289-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0289-z

Keywords

Navigation