Biology and Fertility of Soils

, Volume 44, Issue 5, pp 783–790 | Cite as

The effect of macro-invertebrates and plant litter of different quality on the release of N from litter to plant on alpine pastureland

  • Julia SeeberEmail author
  • G. U. H. Seeber
  • Reinhard Langel
  • Stefan Scheu
  • Erwin Meyer
Short Communication


The effect of 15N-labelled litter of different quality (Luzula sylvatica, a grass species, Vaccinium gaultheroides, a deciduous dwarf shrub, and Calluna vulgaris, a hardy dwarf shrub) and the presence of macro-decomposers (Lumbricus rubellus, Lumbricidae, and Enantiulus nanus, Diplopoda) on the growth of Dactylis glomerata (Poaceae), a grass species abundant on alpine pastureland, was investigated. After 4 months, the presence of soil animals significantly increased litter mass loss of L. sylvatica, V. gaultheroides and C. vulgaris by 27%, 11% and 40%, respectively. Soil animals generally reduced microbial biomass but significantly increased it in treatments where either L. sylvatica or C. vulgaris was present. The presence of soil animals significantly increased shoot and root biomass of D. glomerata by 48% and 64%, respectively. L. rubellus increased the transfer of 15N from the litter into plants. We conclude that macro-decomposers increased nutrient mobilization and plant uptake of nutrients mineralized from recalcitrant litter materials. Litter of L. sylvatica contributed most to the 15N uptake by D. glomerata, suggesting that litter quality is crucial for the cycling of nutrients on abandoned alpine pastureland.


Decomposition Plant growth 15N-labelled litter Macro-decomposers Alpine pastureland 



The study was financially supported by the FWF (Austrian Science Fund, P16027). We thank S. Zangerle for the assistance in the lab work.


  1. Alphei J, Bonkowski M, Scheu S (1996) Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106:111–126Google Scholar
  2. Bardgett R (2005) The biology of soil. Oxford University Press, OxfordGoogle Scholar
  3. Bitterlich W, Cernusca A (1999) Stubai Valley composite landscape, Tyrol, Austria. In: Cernusca A, Tappeiner U, Bayfield N (eds) Land-use changes in European mountain ecosystems. ECOMONT—concepts and results. Blackwell Wissenschaftsverlag, Berlin, pp 2–15Google Scholar
  4. Bohlen PJ, Parmelee RW, Allen MF, Ketterings QM (1999) Differential effects of earthworms on nitrogen cycling from various nitrogen-15-labeled substrates. Soil Sci Soc Am J 63:882–890Google Scholar
  5. Bohlen PJ, Scheu S, Hale CM, McLean MA, Migge S, Groffman PM, Parkinson D (2004) Non-native invasive earthworms as agents of change in northern temperate forests. Frontiers Ecol Environ 2:427–435CrossRefGoogle Scholar
  6. Bonkowski M, Scheu S, Schaefer M (1998) Interactions of earthworms (Octolasion lacteum), millipedes (Glomeris marginata) and plants (Hordelymus europaeus) in a beechwood on a basalt hill: implications for litter decomposition and soil formation. Appl Soil Ecol 9:161–166CrossRefGoogle Scholar
  7. Bowman WD, Steltzer H, Rosenstiel TN, Cleveland CC, Meier CL (2004) Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos 104:336–344CrossRefGoogle Scholar
  8. Brown GG (1995) How do earthworms affect microfloral and fungal community diversity? Plant Soil 170:209–231CrossRefGoogle Scholar
  9. Brown GG, Hendrix PF, Beare MH (1997) Earthworms (Lumbricus rubellus) and the fate of 15N in surface-applied sorghum residues. Soil Biol Biochem 30:1701–1705CrossRefGoogle Scholar
  10. Brown GG, Edwards CA, Brussaard L (2004) How earthworms affect plant growth: burrowing into the mechanisms. In: Edwards CA (ed) Earthworm ecology. 2nd edn. CRC, Boca Raton, FL, pp 13–49Google Scholar
  11. Brussard L (1999) On the mechanisms of interactions between earthworms and plants. Pedobiologia 43:880–885Google Scholar
  12. Callaham MY Jr, Blair JM, Hendrix PF (2001) Different behavioral patterns of the earthworms Octolasion tyrtaeum and Diplocardia spp. in tallgrass prairie soils: potential influences on plant growth. Biol Fertil Soils 34:49–56CrossRefGoogle Scholar
  13. Chaoui HI, Zibilske LM, Ohno T (2003) Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol Biochem 35:295–302CrossRefGoogle Scholar
  14. Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34PubMedCrossRefGoogle Scholar
  15. Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114CrossRefGoogle Scholar
  16. Cortez J, Billes G, Bouché MB (2000) Effect of climate, soil type and earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions. Biol Fertil Soils 30:318–327CrossRefGoogle Scholar
  17. Devliegher W, Verstraete W (1997) The effect of Lumbricus terrestris on soil in relation to plant growth: effects of nutrient-enrichment processes (NEP) and gut-associated processes (GAP). Soil Biol Biochem 29:341–346CrossRefGoogle Scholar
  18. Dorrepaal E, Cornelissen JHC, Aerts R (2007) Changing leaf litter feadbacks on plant production across contrasting sub-arctic peatland species and growth forms. Oecologia 151:251–261PubMedCrossRefGoogle Scholar
  19. Edwards CA (2004) Ecology of earthworms, 2nd edn. CRC, Boca Raton, FLGoogle Scholar
  20. Flegel M, Schrader S (2000) Importance of food quality on selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol Biochem 32:1191–1196CrossRefGoogle Scholar
  21. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246CrossRefGoogle Scholar
  22. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243PubMedCrossRefGoogle Scholar
  23. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218CrossRefGoogle Scholar
  24. Haynes RJ, Fraser PM, Piercy JE, Tregurtha RJ (2003) Casts of Aporrectodea caliginosa (Savigny) and Lumbricus rubellus (Hoffmeister) differ in microbial activity, nutrient availability and aggregate stability. Pedobiologia 47:882–887Google Scholar
  25. Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116:191–195CrossRefGoogle Scholar
  26. Kössler W (2001) Die Boden-Makrofauna auf Almflächen unter Berücksichtigung des Untergrundes und der Landnutzung im Bereich der Kaserstattalm oberhalb von Neustift im Stubaital (1880–2170 m). Diploma thesis, University of Innsbruck, InnsbruckGoogle Scholar
  27. Kreuzer K, Bonkowski M, Langel R, Scheu S (2004) Decomposer animals (Lumbricidae, Collembola) and organic matter distribution affect the performance of Lolium perenne (Poaceae) and Trifolium repens (Fabaceae). Soil Biol Biochem 36:2005–2011CrossRefGoogle Scholar
  28. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  29. Li X, Fisk MX, Fahey TJ, Bohlen PJ (2002) Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biol Biochem 34:1929–1937CrossRefGoogle Scholar
  30. Maraun M, Scheu S (1996) Changes in microbial biomass, respiration and nutrient status of beech (Fagus sylvatica) leaf-litter processed by millipedes (Glomeris marginata). Oecologia 107:131–140CrossRefGoogle Scholar
  31. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  32. Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229CrossRefGoogle Scholar
  33. Partsch S, Milcu A, Scheu S (2006) Decomposers (Lumbricidae, Collembola) affect plant performance in model grasslands of different diversity. Ecology 87:2548–2558PubMedCrossRefGoogle Scholar
  34. Reineking A, Langel R, Schikowski J (1993) 15-N, 13-C on-line measurements with an elemental analyser (Carlo Erba, NA 1500), a modified trapping box and a gas isotope mass spectrometer (Finnigan, MAT 251). Isotopenpraxis 29:169–174Google Scholar
  35. Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–856Google Scholar
  36. Scheu S, Parkinson D (1994) Effects of earthworms on nutrient dynamics, carbon turnover and microorganisms in soils from cool temperate forests of the Canadian Rocky Mountains—laboratory studies. Appl Soil Ecol 1:113–125CrossRefGoogle Scholar
  37. Scheu S, Setälä H (2002) Multitrophic interactions in decomposer foodwebs. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, UK, pp 223–264Google Scholar
  38. Scheu S, Theenhaus A, Jones TH (1999) Links between the detritivor and the herbivore system. Effects of earthworm and collembola on plant growth and aphid development. Oecologia 119:541–551CrossRefGoogle Scholar
  39. Scheu S, Schlitt N, Tiunov AV, Newington JE, Jones HT (2002) Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 133:254–260CrossRefGoogle Scholar
  40. Schmidt O, Curry JP (1999) Effects of earthworms on biomass production, nitrogen allocation and nitrogen transfer in wheat-clover intercropping model systems. Plant Soil 214:187–198CrossRefGoogle Scholar
  41. Schmidt O, Scrimgeour M (2001) A simple urea leaf-feeding method for the production of 13C and 15N labelled plant material. Plant Soil 229:197–202CrossRefGoogle Scholar
  42. Seeber J, Seeber GUH, Kössler W, Langel R, Scheu S, Meyer E (2005) Abundance and trophic structure of macrofauna decomposers on alpine pastureland (Central Alps, Tyrol): effects of abandonment of pasturing. Pedobiologia 49:221–228CrossRefGoogle Scholar
  43. Seeber J, Scheu S, Meyer E (2006) Effect of macro-decomposers on litter decomposition and soil properties in alpine pastureland: a mesocosm experiment. Appl Soil Ecol 34:168–175CrossRefGoogle Scholar
  44. Tian G, Brussard L, Kang BT (1995) Breakdown of plant residues with contrasting chemical compositions under humid tropical conditions: effects of earthworms and millipedes. Soil Biol Biochem 27:277–280CrossRefGoogle Scholar
  45. Tuffen F, Eason WR, Scullion J (2002) The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porrum plants. Soil Biol Biochem 34:1027–1036CrossRefGoogle Scholar
  46. Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedCrossRefGoogle Scholar
  47. Wardle D (1999) How soil food webs make plants grow. TREE 14:418–420PubMedGoogle Scholar
  48. Wurst S, Langel R, Scheu S (2005) Do endogeic earthworms change plant competition? A microcosm study. Soil Biol Biochem 271:123–130Google Scholar
  49. Xiong S, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Julia Seeber
    • 1
    Email author
  • G. U. H. Seeber
    • 2
  • Reinhard Langel
    • 3
  • Stefan Scheu
    • 4
  • Erwin Meyer
    • 1
  1. 1.Department of Terrestrial Ecology and Taxonomy, Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Social Science Methods GroupUniversity of InnsbruckInnsbruckAustria
  3. 3.Kompetenzzentrum Stabile Isotope, Forschungszentrum WaldökosystemeUniversität GöttingenGöttingenGermany
  4. 4.Institute of ZoologyTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations