Biology and Fertility of Soils

, Volume 44, Issue 4, pp 589–596 | Cite as

Spraying of oxytetracycline and gentamicin onto field-grown coriander did not affect the abundance of resistant bacteria, resistance genes, and broad host range plasmids detected in tropical soil bacteria

  • César Rodríguez-Sánchez
  • Karlheinz Altendorf
  • Kornelia Smalla
  • André Lipski
Original Paper


Horticultural supplements containing oxytetracycline and gentamicin, two clinically relevant biocides, are widely marketed to prevent or control infections by bacterial phytopathogens. Despite their regular consumption in the world’s less developed countries, it is unknown whether exposure of tropical farmlands to these drugs results in an enrichment of resistant bacteria, resistance genes, and/or mobile genetic elements in the soil. These concerns were investigated under field conditions by repeatedly spraying recommended amounts of a commercial product containing oxytetracycline-HCl, and gentamicin-\({\text{SO}}^{{ - 2}}_{4} \) onto two coriander plots. Subsequent to five applications within 16 months, composite soil samples from control and treated sections were compared with respect to the abundance of resistant bacteria and the prevalence of conserved nucleotide sequences from tetracycline efflux proteins, tetracycline ribosomal protection proteins, four different families of gentamicin-modifying enzymes, and broad host range plasmids of the IncP-1 and IncQ incompatibility groups. The isolation frequency of oxytetracycline- and gentamicin-resistant bacteria and the detection rate of the aforementioned genes and elements were unrelated to application of the supplement. Despite the omnipresence of sequences from IncP-1 plasmids, conjugative plasmids conferring resistance to oxytetracycline or gentamicin were not captured in biparental matings. The widespread occurrence of resistant bacteria and resistance genes at the beginning of the trial emerges as a reasonable explanation for the lack of anticipated responses. Moreover, we assume that the biocides applied were inactivated by biotic and abiotic factors under tropical conditions.


Tetracycline Gentamicin Antimicrobial resistance Soil bacteria Horticulture 



César Rodríguez received grants of the Hans Mühlenhoff-Stiftung and was recipient of a fellowship from the German Academic Exchange Service (DAAD). The authors are grateful to M.Sc. Amy Wang from the Centro de Investigación en Protección de Cultivos (CIPROC) of the University of Costa Rica and to Dr. Fernando García at the Centro de Investigación en Enfermedades Tropicales (CIET) of the same university for invaluable assistance and supervision regarding the field experiment, sample collection, and project logistics. Escherichia coli strains carrying tet(A), tet(B), tet(C), tet(H), tet(M), tet(O), and tet(Q) were a gift of Dr. Andrea Patterson at the Rowett Research Institute (Aberdeen, UK). Dr. Sophie Bertrand at the Bacteriology Division of the Scientific Institute of Public Health (Brussels, Belgium) is acknowledged for donating us E. coli EC64 and E. coli EC65 for detection of tet(G) and tet(L). The strain Pseudomonas sp. GFP2 was kindly obtained from Dr. Andreas Schlüter (Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld).


  1. Aamczyk M, Jagura-Burdzy G (2003) Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol 50:425–453Google Scholar
  2. Agerso Y, Sengelov G, Jensen LB (2004) Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. Environ Int 30:117–122PubMedCrossRefGoogle Scholar
  3. Aminov RI, Garrigues-Jeanjean N, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32PubMedCrossRefGoogle Scholar
  4. Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299PubMedCrossRefGoogle Scholar
  5. Dröge M, Pühler A, Selbitschka W (2000) Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Gent 236:471–482Google Scholar
  6. Götz A, Pukall R, Smit E, Tietze E, Prager R, Tschäpe H, van Elsas JD, Smalla K (1996) Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628PubMedGoogle Scholar
  7. Halling-Sørensen B, Sengeløv G, Tjørnelund T (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 42:263–271PubMedCrossRefGoogle Scholar
  8. Hamscher G, Pawelzick HT, Hoper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868PubMedCrossRefGoogle Scholar
  9. Hart C, Kariuki S (1998) Antimicrobial resistance in developing countries. BMJ 317:647–650PubMedGoogle Scholar
  10. Heuer H, Krögerrecklenfort E, Wellington EMH, Egan S, van Elsas JD, van Overbeek L, Collard J-M, Guillaume G, Karagouni A, Nikolakopoulou D, Smalla K (2002) Gentamicin resistance genes in environmental bacteria: Prevalence and transfer. FEMS Microbiol Ecol 42:289–302CrossRefGoogle Scholar
  11. Hugenholz P, Goebel BM, Pace N (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriology 180:4765–4774Google Scholar
  12. Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: Function, diversity, resistance. J Soils Sediments 1:11–16CrossRefGoogle Scholar
  13. Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236PubMedCrossRefGoogle Scholar
  14. Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7PubMedCrossRefGoogle Scholar
  15. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522PubMedGoogle Scholar
  16. McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 401:443–465CrossRefGoogle Scholar
  17. Miranda CD, Kehrenberg C, Ulep C, Schwarz S, Roberts MC (2003) Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother 47:883–888PubMedCrossRefGoogle Scholar
  18. Nikolakopoulou TL, Egan S, van Overbeek LS, Guillaume G, Heuer H, Wellington EMH, van Elsas JD, Collard J-M, Smalla K, Karagouni AD (2005) PCR detection of oxytetracycline resistance genes otr(A) and otr(B) in tetracycline-resistant streptomycete isolates from diverse habitats. Curr Microbiol 51:211–216PubMedCrossRefGoogle Scholar
  19. Nwosu VC (2001) Antibiotic resistance with particular reference to soil microorganisms. Res Microbiol 152:421–430PubMedCrossRefGoogle Scholar
  20. Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisich VA, Thomas CM (1994) Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol 239:623–663PubMedCrossRefGoogle Scholar
  21. Pukall R, Tschäpe H, Smalla K (1996) Monitoring the spread of broad host and narrow host range plasmids in soil microcosms. FEMS Microbiol Ecol 20:53–66CrossRefGoogle Scholar
  22. Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722PubMedCrossRefGoogle Scholar
  23. Rawlings DE, Tietze E (2001) Comparative biology of IncQ and IncQ-like plasmids. Microbiol Mol Biol Rev 65:481–496PubMedCrossRefGoogle Scholar
  24. Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989PubMedCrossRefGoogle Scholar
  25. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203PubMedCrossRefGoogle Scholar
  26. Schmidt F, Klopfer-Kaul I (1984) Evolutionary relationship between Tn21-like elements and pBP201, a plasmid from Klebsiella pneumoniae mediating resistance to gentamicin and eight other drugs. Mol Gen Genet 197:109–119PubMedCrossRefGoogle Scholar
  27. Schmitt H, Stoob K, Hamscher G, Smit E, Seinen W (2006) Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb Ecol 51:267–276PubMedCrossRefGoogle Scholar
  28. Schnabel EL, Jones AL (1999) Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol 65:4898–4907PubMedGoogle Scholar
  29. Smalla K, Sobecky PA (2002) The prevalence and diversity of mobile genetic elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol Ecol 42:165–175CrossRefGoogle Scholar
  30. Smalla K, van Overbeek LS, Pukall R, van Elsas JD (1993) Prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Ecol 13:47–58CrossRefGoogle Scholar
  31. Smalla K, Heuer H, Götz A, Niemeyer D, Krögerrecklenfort E, Tietze E (2000a) Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl Environ Microbiol 66:4854–4862PubMedCrossRefGoogle Scholar
  32. Smalla K, Krögerrecklenfort E, Heuer H, Dejonghe W, Top E, Osborn M, Niewint J, Tebbe C, Barr M, Bailey M, Greated A, Thomas C, Turner S, Young P, Nikolakopoulou D, Karagouni A, Wolters A, van Elsas JD, Drønen K, Sandaa R, Borin S, Brabhu J, Grohmann E, Sobecky P (2000b) PCR-based detection of mobile genetic elements in total community DNA. Microbiology 146:1256–1257PubMedGoogle Scholar
  33. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167CrossRefGoogle Scholar
  34. Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465PubMedCrossRefGoogle Scholar
  35. Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–445PubMedCrossRefGoogle Scholar
  36. Vidaver AK (2002) Uses of antimicrobials in plant agriculture. Clin Infec Dis 34:S107–S110CrossRefGoogle Scholar
  37. Wright GD (1999) Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2:499–503PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • César Rodríguez-Sánchez
    • 1
    • 2
    • 4
  • Karlheinz Altendorf
    • 1
  • Kornelia Smalla
    • 3
  • André Lipski
    • 1
  1. 1.Abteilung Mikrobiologie, Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany
  2. 2.Research Center for Tropical Diseases, Faculty of MicrobiologyUniversity of Costa Rica, Ciudad Universitaria Rodrigo FacioSan JoséCosta Rica
  3. 3.Biologische Bundesanstalt für Land-und ForstwirtschaftInstitut für Pflanzenvirologie, Mikrobiologie und Biologische SicherheitBraunschweigGermany
  4. 4.Sección de Bacteriología General, Facultad de MicrobiologíaUniversidad de Costa Rica, Ciudad Universitaria Rodrigo FacioSan JoséCosta Rica

Personalised recommendations