Biology and Fertility of Soils

, Volume 42, Issue 4, pp 286–298 | Cite as

Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity

  • Boris Börstler
  • Carsten Renker
  • Ansgar Kahmen
  • François Buscot
Original Paper

Abstract

Species composition of arbuscular mycorrhizal fungi (AMF) was analysed in two differently managed mountain grasslands in Thuringia (Germany). Arbuscular mycorrhizal fungi were studied in the roots of 18 dominant plant species from a total of 56 (32%). Additionally, spores of AMF were isolated from soil samples. Arbuscular mycorrhizal fungi species composition was analysed based on 96 sequences of the internal transcribed spacer of the nuclear ribosomal DNA, 72 originated from mycorrhizal roots, and 24 originated from AMF spores. Phylogenetic analyses revealed a total of 19 AMF species representing all genera of the Glomeromycota except Scutellospora and Pacispora. Despite a different farming intensity, resulting in remarkable differences concerning their plant species diversity (27 against 43 plant species), the diversity of AMF was found to be similar with 11 species on the intensively farmed meadow and ten species on the extensively farmed one. Nevertheless, species composition between both sites was clearly different. It thus seems likely that the AMF species composition, but not necessarily the species number, is related to above ground plant biodiversity in the system under study.

Keywords

Arbuscular mycorrhizal fungi Farming intensity Internal transcribed spacer Plant species diversity Species composition 

Notes

Acknowledgements

The study is part of BIOLOG-Europe, a biodiversity scientific programme funded by the German Federal Ministry of Education and Research (BMBF), grant no. 01LC0013.

We wish to thank Thomas Scholten for providing soil data and Herbert Boyle who improved the English of the manuscript.

References

  1. Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62CrossRefGoogle Scholar
  2. Allen MF, Lansing J, Allen EB (2002) The role of mycorrhizal fungi in the composition and dynamics of plant communities: a scaling issue. Prog Bot 63:344–367Google Scholar
  3. Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97CrossRefGoogle Scholar
  4. Błaszkowski J, Blanke V, Renker C, Buscot F (2004) Glomus aurantium and G. xanthium, new species in Glomeromycota. Mycotaxon 90:447–467Google Scholar
  5. Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. II. Studies in experimental microcosms. Plant Soil 218:145–157CrossRefGoogle Scholar
  6. Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol Rev 24:601–614PubMedCrossRefGoogle Scholar
  7. Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265CrossRefGoogle Scholar
  8. Cullings KW, Vogler DR (1998) A 5.8S nuclear ribosomal RNA gene sequence database: applications to ecology and evolution. Mol Ecol 7:919–923CrossRefPubMedGoogle Scholar
  9. Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209PubMedCrossRefGoogle Scholar
  10. Esch H, Hundeshagen B, Schneider-Poetsch H, Bothe H (1994) Demonstration of abscisic acid in spores and hyphae of the arbuscular–mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16CrossRefGoogle Scholar
  11. Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533CrossRefGoogle Scholar
  12. Francis R, Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis with special reference to impacts on plant community structure. Can J Bot 73:1301–1309Google Scholar
  13. Galli U, Schüepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368CrossRefGoogle Scholar
  14. Gerdemann JW, Trappe JM (1974) The Endogonaceae in the Pacific Northwest. Mycol Mem 5:1–76Google Scholar
  15. Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117CrossRefPubMedGoogle Scholar
  16. Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422CrossRefGoogle Scholar
  17. Hardie K (1985) The effect of removal of extraradical hyphae on water uptake by vesicular–arbuscular mycorrhizal plants. New Phytol 101:677–684CrossRefGoogle Scholar
  18. Harley JL, Harley EL (1987) A check-list of mycorrihiza in the British Flora. New Phytol 105(Suppl.):1–102CrossRefGoogle Scholar
  19. Hartnett DC, Wilson GWT (2002) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195Google Scholar
  20. Hattenbach K (1959) Thüringer Schiefergebirge. In: Meynen E, Schmidthüsen J, Gellert J, Neef E, Müller-Miny H, Schultze HJ (eds) Handbuch der naturräumlichen Gliederung Deutschlands, Band II. Bundesanstalt für Landeskunde und Raumforschung, Bad Godesberg, pp 615–616Google Scholar
  21. Haug I, Lempe J, Homeier J, Weiß M, Setaro S, Oberwinkler F, Kottke I (2004) Graffenrieda emarginata (Melastomataceae) forms mycorrhizas with Glomeromycota and with a member of the Hymenoscyphus ericae aggregate in the organic soil of a neotropical mountain rain forest. Can J Bot 82:340–356CrossRefGoogle Scholar
  22. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431CrossRefPubMedGoogle Scholar
  23. Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384CrossRefGoogle Scholar
  24. Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183CrossRefGoogle Scholar
  25. Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678CrossRefPubMedGoogle Scholar
  26. Jansa J, Mozafar A, Banke S, McDonald BA, Frossard E (2002) Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681CrossRefGoogle Scholar
  27. Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757CrossRefGoogle Scholar
  28. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Both RE, Grime JP, Young JPW, Read DJ (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515CrossRefGoogle Scholar
  29. Kahmen A, Perner J, Audorff V, Weisser W, Buchmann N (2005) Effects of plant diversity, community composition and environmental parameters on productivity in montane European grasslands. Oecologia 142:606–615CrossRefPubMedGoogle Scholar
  30. Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biró B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211CrossRefPubMedGoogle Scholar
  31. Lloyd-MacGilp SA, Chambers SM, Dodd JC, Fitter AH, Walker C, Young JPW (1996) Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi. New Phytol 133:103–111CrossRefGoogle Scholar
  32. Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta. I. Diversity of fungal taxa. New Phytol 138:117–129CrossRefGoogle Scholar
  33. Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364CrossRefGoogle Scholar
  34. Newsham KK, Watkinson AR, West HM, Fitter AH (1995) Symbiotic fungi determine plant community structure: changes in a lichen-rich community induced by fungicide application. Funct Ecol 9:442–447CrossRefGoogle Scholar
  35. Nielsen KB, Kjøller R, Olsson PA, Schweiger PF, Andersen FO, Rosendahl S (2004) Colonisation and molecular diversity of arbuscular mycorrhizal fungi in the aquatic plants Littorella uniflora and Lobelia dortmanna in southern Sweden. Mycol Res 108:616–625CrossRefPubMedGoogle Scholar
  36. Odat N, Jetschke G, Hellwig FH (2004) Genetic diversity of Ranunculus acris L. (Ranunculaceae) populations in relation to species diversity and habitat type in grassland communities. Mol Ecol 13:1251–1257CrossRefPubMedGoogle Scholar
  37. Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737CrossRefPubMedGoogle Scholar
  38. Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10:73–80CrossRefGoogle Scholar
  39. Redecker D, Hijri M, Dulieu H, Sanders IR (1999) Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of internal transcribed spacers reported from Scutellospora castanea are of ascomycete origin. Fungal Genet Biol 28:238–244CrossRefPubMedGoogle Scholar
  40. Renker C, Heinrichs J, Kaldorf M, Buscot F (2003) Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza 13:191–198CrossRefPubMedGoogle Scholar
  41. Renker C, Zobel M, Öpik M, Allen MF, Allen EB, Vosátka M, Rydlová J, Buscot F (2004) Structure, dynamics, and restoration of plant communities: do arbuscular mycorrhizae matter? In: Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds) Assembly rules and restoration ecology—bridging the gap between theory and practice. Island, Washington DC, pp 189–229Google Scholar
  42. Renker C, Blanke V, Buscot F (2005) Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environ Pollut 135:255–266CrossRefPubMedGoogle Scholar
  43. Rosendahl S, Stukenbrock E (2004) Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Mol Ecol 13:3179–3186CrossRefPubMedGoogle Scholar
  44. Sanders IR, Clapp JP, Wiemken A (1996) The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems—a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol 133:123–134CrossRefGoogle Scholar
  45. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  46. Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  47. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, LondonGoogle Scholar
  48. Swofford DL (2003) Paup*. Phylogenetic analysis using parsimony (* and other Methods), Ver. 4.0b10. Sinauer, Sunderland, MAGoogle Scholar
  49. Tilman D (2000) Causes, consequences and ethics of biodiversity. Nature 405:208–211CrossRefPubMedGoogle Scholar
  50. Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515CrossRefGoogle Scholar
  51. Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in Southern Poland. Mycorrhiza 10:169–174CrossRefGoogle Scholar
  52. van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091CrossRefGoogle Scholar
  53. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  54. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564CrossRefPubMedGoogle Scholar
  55. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095CrossRefPubMedGoogle Scholar
  56. Walker C, Trappe JM (1993) Names and epithets in the Glomales and Endogonales. Mycol Res 97:339–344CrossRefGoogle Scholar
  57. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  58. Wubet T, Weiß M, Kottke I, Teketay D, Oberwinkler F (2003a) Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytol 161:517–528CrossRefGoogle Scholar
  59. Wubet T, Weiß M, Kottke I, Oberwinkler F (2003b) Morphology and molecular diversity of arbuscular mycorrhizal fungi in wild and cultivated yew (Taxus baccata). Can J Bot 81:255–266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Boris Börstler
    • 1
  • Carsten Renker
    • 1
  • Ansgar Kahmen
    • 2
  • François Buscot
    • 1
  1. 1.Institute of Botany, Terrestrial EcologyUniversity of LeipzigLeipzigGermany
  2. 2.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations