Biology and Fertility of Soils

, Volume 41, Issue 1, pp 15–21 | Cite as

Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics

  • Stéphanie Topoliantz
  • Jean-François PongeEmail author
  • Sylvain Ballof
Original Paper


In tropical areas, where crop production is limited by low soil quality, the development of techniques improving soil fertility without damage to the environment is a priority. In French Guiana, we used subsistence farmer plots on poor acidic soils to test the effect of different organic amendments, bitter manioc peel (M), sawdust (Sw) and charcoal (Ch), on soil nutrient content, earthworm abundance and yard-long bean (Vigna unguiculata sesquipedalis) production. The peregrine Pontoscolex corethrurus was the only earthworm species found. Pod production and plant growth were lowest in unamended soil. The application of a mixture of manioc peel and charcoal (M + Ch) improved legume production compared with other organic mixtures. It combined the favourable effects of manioc peel and charcoal. Manioc peel improved soil fertility through its low C:N ratio and its high P content, while charcoal decreased soil acidity and exchangeable Al and increased Ca and Mg availability, thus alleviating the possible toxic effects of Al on plant growth. The M + Ch treatment was favourable to P. corethrurus, the juvenile population of which reached a size comparable to that of the nearby uncultivated soil. The application of a mixture of manioc peel and charcoal, by improving crop production and soil fertility and enhancing earthworm activity, could be a potentially efficient organic manure for legume production in tropical areas where manioc is cultivated under slash-and-burn shifting agriculture.


Organic farming Slash-and-burn cultivation Earthworm density Legume Soil nutrient content 



We thank the Mission pour la Création du Parc du Sud de la Guyane, the PPF Guyane of the Museum National d’Histoire Naturelle and the GIS Silvolab of French Guiana for financial support and commodities. We are grateful to Mr. Lobbini and his son, local farmers, for their technical assistance in the field. We also thank the Institut Pasteur (Lille, France) for cyanide analyses and the Institut National de la Recherche Agronomique (Arras, France) for mineral soil analyses.


  1. AFNOR (1999) Qualité des sols. AFNOR, ParisGoogle Scholar
  2. AFNOR (2001) Qualité de l’eau. AFNOR, ParisGoogle Scholar
  3. Anderson JM, Ingram J (1993) Tropical soil biology and fertility. A handbook of methods, 2nd edn. CAB, OxfordGoogle Scholar
  4. Baize D (2000) Guide des analyses en pédologie, 2nd edn. INRA, ParisGoogle Scholar
  5. Barois I, Verdier B, Kaiser P, Mariotti A, Rangel P, Lavelle P (1987) Influence of the tropical earthworm Pontoscolex corethrurus (Glossoscolecidae) on the fixation and mineralization of nitrogen. In: Bonvicini Pagliai AM, Omodeo P (eds) On earthworms, vol 2. Mucchi, Modena, pp 151–158Google Scholar
  6. Beare MH, Vikram Reddy M, Tian G, Srivastava SC (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of decomposer biota. Appl Soil Ecol 6:87–108CrossRefGoogle Scholar
  7. Brady NC (1996) Alternatives to slash-and-burn agriculture: a global imperative. Agric Ecosyst Environ 58:3–11CrossRefGoogle Scholar
  8. Brady NC, Weil RR (1999) The nature and properties of soils. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  9. Brown GG (1995) How do earthworms affect microflora and faunal community diversity? In: Collins HP, Robertson GP, Klug MJ (eds) The significance and regulation of soil biodiversity. Kluwer, Dordrecht, pp 247–269Google Scholar
  10. Carcaillet C, Thinon M (1996) Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne Valley (North French Alps): methodology and preliminary data. Rev Palaeobot Palynol 91:399–416CrossRefGoogle Scholar
  11. Chan ML, Jones JM, Pourkashanian M, Williams A (1999) Oxidative reactivity of coal chars in relation to their structure. Fuel 78:1539–1552CrossRefGoogle Scholar
  12. Edmonds RL (1987) Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington, U.S.A. Can J For Res 17:499–509Google Scholar
  13. FAO (1985) Tropical forestry action plan. FAO, RomeGoogle Scholar
  14. Foy CD (1974) Effects of aluminium on plant growth. In: Carson EW (ed) The plant root and its environment. Virginia University Press, Charlottesville, pp 601–642Google Scholar
  15. Fragoso C (1985) Ecologia general de las lombrices terrestres (Oligochaeta: Annelida) de la region Boca del Chajul, Selva Lancandona, Estado de Chapias. Doctorate thesis, Universidad Nacional Autonoma de Mexico, MexicoGoogle Scholar
  16. Glantz SA (1997) Primer of biostatistics, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  17. Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41CrossRefPubMedGoogle Scholar
  18. Glaser B, Lehmann J, Zech W, (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fertil Soils 35:219–230CrossRefGoogle Scholar
  19. Guillaumet JL (1996) Les plantes alimentaires des forêts humides intertropicales et leur domestication: exemples africains et américains. In: Hladik CM, Hladik A, Pagezy H, Linares OF, Koppert GJA, Froment A (eds) L’alimentation en forêt tropicale: intéractions bioculturelles et perspectives de développement. UNESCO, Paris, pp 121–130Google Scholar
  20. Holl WH, Horst J (1997) Description of sorption equilibria for ions onto activated carbon using the surface complexation theory. Water Sci Technol 35:287–294CrossRefGoogle Scholar
  21. Kishimoto S, Sugiura G (1985) Charcoal as soil conditioner. Int Achieve Future 5:12–23Google Scholar
  22. Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132Google Scholar
  23. Lavelle P, Barois I, Cruz I, Fragoso C, Hernandez A, Pineda A, Rangel P (1987) Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Fertil Soils 5:188–194CrossRefGoogle Scholar
  24. Lavelle P, Barois I, Martin A, Zaidi Z, Schaefer R (1989) Management of earthworm populations in agro-ecosystems: a possible way to maintain soil quality? In: Clarholm M, Bergström L (eds) Ecology of arable land. Kluwer, Dordrecht, pp 109–122Google Scholar
  25. Mba CC (1983) Utilization of Eudrilus eugeniae for disposal of cassava peel. In: Satchell JE (eds) Earthworm ecology, from Darwin to vermiculture. Chapman and Hall, London, pp 315–321Google Scholar
  26. Mba CC (1996) Treated cassava peel vermicomposts enhanced earthworm activities and cowpea growth in field plots. Resour Conserv Recycl 17:219–226CrossRefGoogle Scholar
  27. Myers RJK, De Pauw E (1995) Strategies for management of soil acidity. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant-soil interactions at low pH: principles and management. Kluwer, Dordrecht, pp 729–741Google Scholar
  28. Nair VD, Prenzel J (1978) Calculations of equilibrium concentration of mono- and polynuclear hydroxyaluminium species at different pH and total aluminium concentrations. Z Pflanzenernahr Bodenkd 141:741–751Google Scholar
  29. Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242Google Scholar
  30. Salisbury FB, Ross CW (1985) Plant physiology, 3rd edn. Wadsworth, BelmontGoogle Scholar
  31. Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2:207–247CrossRefGoogle Scholar
  32. Senapati BK, Lavelle P, Giri S, Pashanasi B, Alegre J, Decaëns T, Jimenez JJ, Albrecht A, Blanchart E, Mahieux M, Rousseaux L, Thomas R, Panigrahi PK, Venkatachalam M (1999) In-soil earthworm technologies for tropical agroecosystems. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CAB, London, pp 199–237Google Scholar
  33. Skjemstad JO, Clarke P, Taylor JA, Oades JM, Mc Clure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271Google Scholar
  34. Sparovek G (1998) Influence of organic matter and soil fauna on crop productivity and soil restoration after simulated erosion. Adv Geoecol 31:431–434Google Scholar
  35. Swift MJ (1977) The roles of fungi and animals in the immobilisation and release of nutrient elements from decomposing branch-wood. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. Ecol Bull 25:193–202Google Scholar
  36. Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer, Sunderland, Mass.Google Scholar
  37. Tan KH (1982) Principles of soil chemistry. Dekker, New YorkGoogle Scholar
  38. Tian G, Brussaard L, Kang BT (1993) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects on soil fauna. Soil Biol Biochem 25:731–737CrossRefGoogle Scholar
  39. Tian G, Kang BT, Brussaard L (1997) Effect of mulch quality on earthworm activity and nutrient supply in the humid tropics. Soil Biol Biochem 29:369–373CrossRefGoogle Scholar
  40. Titoff A (1910) Die Adsorption von Gasen durch Kohle. Z Phys Chem Stöchiom Verwandtschlehre 74:641–678Google Scholar
  41. Topoliantz S, Ponge JF (2003) Burrowing activity of the geophagous earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in the presence of charcoal. Appl Soil Ecol 23:267–271CrossRefGoogle Scholar
  42. Topoliantz S, Ponge JF, Arrouays D, Ballof S, Lavelle P (2002) Effect of organic manure and the endogeic earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) on soil fertility and bean production. Biol Fertil Soils 36:313–319CrossRefGoogle Scholar
  43. Tryon EH (1948) Effect of charcoal on certain physical, chemical and biological properties of forest soils. Ecol Monogr 18:81–115Google Scholar
  44. Voundi Nkana JC, Demeyer A, Verloo MG (1998) Availability of nutrients in wood ash amended tropical acid soils. Environ Technol 19:1213–1221Google Scholar
  45. Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426CrossRefGoogle Scholar
  46. Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 77:10–19Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Stéphanie Topoliantz
    • 1
  • Jean-François Ponge
    • 1
    Email author
  • Sylvain Ballof
    • 2
  1. 1.Museum National d’Histoire NaturelleBrunoyFrance
  2. 2.Office National des ForêtsMaripasoulaFrench Guiana

Personalised recommendations