Biology and Fertility of Soils

, Volume 39, Issue 6, pp 438–445 | Cite as

Earthworm populations under tropical maize cultivation: the effect of mulching with velvetbean

  • Angel I. Ortiz-Ceballos
  • Carlos FragosoEmail author
Original Paper


Earthworm populations were studied in three tropical agroecosystems of southern Mexico: improved maize with a Mucuna pruriens cover crop (MM), continuous conventional maize (CM) and pastures (P). Three replicates and six monoliths were sampled in each agroecosystem. Three earthworm species were found, two native (Balanteodrilus pearsei, Larsonidrilus orbiculatus) and one exotic (Polypheretima elongata). In all systems, the dominant species was B. pearsei, with negligible presence of the exotic species in MM and P plots. Total abundance was significantly higher in MM than in CM; and earthworm biomass was also higher in MM than in CM and P. Juveniles of both native species dominated, mainly concentrated in the top 20 cm of soil. B. pearsei and L. orbiculatus displayed different preferences (within each agroecosystem) for soil organic matter, N and temperature. Further experiments are required to investigate whether mulching with M. pruriens results in an increased earthworm abundance and biomass through a N-improvement effect or as a result of microclimatic changes and to study the extent to which earthworms and M. pruriens are synergistic in enhancing maize growth.


Mexico Mucura pruriens Cover crops Pastures Oligochaeta Megascolecidae 



The authors acknowledge Drs. G. Brown, M. Equihua and J.J. Peña-Cabriales for helpful suggestions made during this research that greatly improved this manuscript. In addition, the authors are grateful to P. Nannipieri and two anonymous reviewers for valuable comments and careful revision of the manuscript. A.I.O.-C. acknowledges scholarship support provided by the Mexican CONACYT (Num. Reg. 83463).


  1. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CABI, WallingfordGoogle Scholar
  2. Angeles VJA (1996) Aspectos demográficos e interacción de dos especies simpátricas de Balanteodrilus (Oligochaeta: Annelida) en una selva costera del estado de Veracruz. Licenciatura thesis, Universidad Veracruzana, CórdobaGoogle Scholar
  3. Arteaga C (1992) Sistemática y ecología de las lombrices de tierra (Annelida, Oligochaeta) de la Cuenca Baja del Río Panuco. Licenciatura thesis, Universidad del Noroeste, TampicoGoogle Scholar
  4. Barois I, Lavelle P, Brossard M, Tondoh J, Mártinez MA, Rossi JP, Senapati BK, Angeles A, Fragoso C, Jiménez JJ, Decaëns T, Lattaud C, Kanyonyo J, Blanchart E, Chapuis L, Brown G, Moreno A (1999) Ecology of earthworm species with large environmental tolerance and/or extended distributions. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CABI, Wallingford, pp 57–85Google Scholar
  5. Binet F, Trehen P (1992) Experimental microcosm study of the role of Lumbricus terrestris (Oligochaeta: Lumbricidae) on nitrogen dynamics in cultivated soils. Soil Biol Biochem 24:1501–1506CrossRefGoogle Scholar
  6. Boström U, Lofs-Holmin A (1986) Growth of earthworms (Allolophora caliginosa) fed on shoots and roots of barley, meadow fescue, and lucerne: studies in relation to particle size, protein, crude fiber and toxicity. Pedobiologia 29:1–12Google Scholar
  7. Brown GG, Pashanasi B, Villenave C, Patrón JC, Senapati BK, Giri S, Barois I, Lavelle P, Blanchart E, Blakemore RJ, Spain AV, Boyer J (1999) Effects of earthworms on plant production. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CABI, Wallingford, pp 87–147Google Scholar
  8. Brussaard L (1999) On the mechanisms of interactions between earthworms and plant. Pedobiologia 43:880–885Google Scholar
  9. Buck C, Langmaack M, Schrader S (1999) Nutrient content of earthworm casts influenced by different mulch types. Eur J Soil Biol 35:23–30CrossRefGoogle Scholar
  10. Buckerfield JC (1992) Earthworm population in dryland cropping soil under conservation-tillage in south Australia. Soil Biol Biochem 24:1667–1672CrossRefGoogle Scholar
  11. Buckles D (1995) Velvetbean: a new plant with a history. Econ Bot 49:151–162Google Scholar
  12. Chauvel A, Grimaldi M, Barros E, Blanchart E, Desjardins T, Sarrazin M, Lavelle P (1999) Pasture damage by an Amazonian earthworm. Nature 398:32–33Google Scholar
  13. Cortez J, Hameed R, Bouché MB (1989) C and N transfer in soil with or without earthworms fed with 14C- and 15N-labelled wheat straw. Soil Biol Biochem 21:491–497CrossRefGoogle Scholar
  14. Curry JP (1998) Factors affecting earthworms abundance in soils. In: Edwards CA (ed) Earthworm ecology. St. Lucie Press, Boca Raton, Fla., pp 37–64Google Scholar
  15. De la Cruz EY (1999) Influencia de la humedad, el ganado y los árboles sobre la diversidad, actividad y abundancia de las lombrices de tierra en potreros de “La Mancha, Veracruz”. Licenciatura thesis, Universidad Veracruzana, XalapaGoogle Scholar
  16. Edwards CA, Bohlen PJ, Linden DR, Subler S (1995) Earthworms in agroecosystems. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. Lewis, Boca Raton, Fla., pp 185–214Google Scholar
  17. Emmerling C (2001) Response of earthworm communities to different types soil tillage. Appl Soil Ecol 17:91–96CrossRefGoogle Scholar
  18. Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32Google Scholar
  19. FAO (1988) FAO/UNESCO soil map of the world, revised legend. (World Soil Resources Report 60) FAO, RomeGoogle Scholar
  20. Fragoso C (1985) Ecologia general de las lombrices terrestres (Oligochaeta: Anelida) de la región Boca del Chajul, Selva Lacandona, estado de Chiapas. Licenciatura thesis, UNAM, Mexico CityGoogle Scholar
  21. Fragoso C (1993) Les peuplements de vers de terre dans l’est et sud-est du Mexique. PhD thesis, University of Paris, ParisGoogle Scholar
  22. Fragoso C (2001) Las lombrices de tierra de México (Annelida, Oligochaeta): diversidad, ecología y manejo. Acta Zool Mex [Num Espec]:131–171Google Scholar
  23. Fragoso C, Lavelle P (1987) The earthworms community of a Mexican tropical rain forest (Chajul, Chiapas). In: Bonvicini AM, Omodeo P (eds) On earthworms. (Selected Symposia and Monographs UZI 2) Mucchi, Moderna, pp 281–295Google Scholar
  24. Fragoso C, Rojas P (1997) Size shift in the Mexican earthworm species Balanteodrilus pearsei (Megascolecidade, Acanthodrilini): possible case of character displacement. Soil Biol Biochem 29:237–240CrossRefGoogle Scholar
  25. Fragoso C, James SW, Borges S (1995) Native earthworms of the north neotropical region. Current status and controversies. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. Lewis, Boca Raton, Fla., pp 67–116Google Scholar
  26. Fragoso C, Lavelle P, Blanchart E, Senapati BK, Jimenez JJ, Martinez MA, Decaëns T, Tondoh J (1999a) Earthworm communities of tropical agroecosystems: origin, structure and influence of management practices. In: Lavelle P, Brussaard L, Hendrix PF (eds) Earthworm management in tropical agroecosystems. CABI, Wallingford, pp 27–55Google Scholar
  27. Fragoso C, Kanyonyo J, Moreno A, Senapati BK, Blanchart E, Rodríguez C (1999b) A survey of tropical earthworms: taxonomy, biogeography and environmental plasticity. In: Lavelle P, Brussaard L, Hendrix PF (eds) Earthworm management in tropical agroecosystems. CABI, Wallingford, pp 1–26Google Scholar
  28. Hubbard VC, Jordan D, Stecker JA (1999) Earthworm response to rotation and tillage in a Missouri claypan soil. Biol Fertil Soils 29:343–347CrossRefGoogle Scholar
  29. Huerta E (2002) Etude comparative des facteurs qui determinet la biomasse et la densite de vers de terre, dans les zones naturelles et anthropisees dans les soils des tropiques. PhD thesis, University of Paris, ParisGoogle Scholar
  30. Hulugalle NR, Lail R, Kuile CHH (1986) Amelioration of soil physical properties by Mucuna after mechanized land clearing of tropical rain forest. Soil Sci 14:219–224Google Scholar
  31. James SW (1993) New Acanthodriline earthworms from Mexico (Oligichaeta: Megascolecidae). Acta Zool Mex 60:1–21Google Scholar
  32. Jimenéz JJ, Decaëns T (2000) Vertical distribution of earthworms in grassland soils of the Colombian “Llanos”. Biol Fertil Soils 32:463–473CrossRefGoogle Scholar
  33. Jiménez JJ, Moreno AG, Decaëns T, Lavelle P, Fisher MJ, Thomas RJ (1998) Earthworms communities in native savanna and man-made pastures of the Eastern Plain of Colombia. Biol Fertil Soils 28:101–110CrossRefGoogle Scholar
  34. Lal R (1999) Restorative effects of Mucuna utilis on soil organic C pool of a severely degraded alfisol in Western Nigeria. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. CRS Press, Boca Raton, Fla., pp 147–156Google Scholar
  35. Lavelle P (1983) The structure of earthworms communities. In: Satchell JE (ed) Earthworm ecology: from Darwin to vermiculture. Chapman and Hall, London, pp 449–466Google Scholar
  36. Lavelle P, Pashanasi P (1989) Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia 33:283–291Google Scholar
  37. Lavelle P, Barois I, Martin A, Zaidi Z, Schafer R (1989) Management of earthworm populations in agroecosystems: a possible way to maintain soil quality? In: Clarholm M, Bergström L (eds) Ecology of arable land. Kluwer, Dordrecht, pp 109–122Google Scholar
  38. Lavelle P, Gilot C, Fragoso C, Pashanasi B (1994) Soil fauna and sustainable land use in the humid tropics. In: Greenland DJ, Szabolcs Z (eds) Soil resilience and sustainable land use. CABI, Wallingford, pp 291–308Google Scholar
  39. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  40. Lee KE (1995) Earthworms and sustainable land use. In: Hendrix PF (ed) Earthworm ecology and biogeography in North America. Lewis, Boca Raton, Fla., pp 215–234Google Scholar
  41. Ortiz EB (2000) Ganadería bovina, biodiversidad del suelo y sustentabilidad en el trópico Veracruzano. PhD thesis, Instituto de Ecología, A.C., XalapaGoogle Scholar
  42. Ortiz-Ceballos AI (1995) Evaluación de cultivares de picapica mansa Mucuna spp como cultivos de cobertura. MSc thesis, Colegio de Postgraduados, Mexico CityGoogle Scholar
  43. Ortiz-Ceballos AI, Aguirre JR, Osorio M (1997) Proposiciones sobre el cultivo de nescafé Mucuna spp como cultivo de cobertura para ser usado en rotación o asociado en cultivos y praderas. In: SEMARNAT (ed) Los suelos de Tabasco: restauracion, conservación y uso. SEMARNAT, Villahermosa, pp 44–49Google Scholar
  44. Pingali Pl, Pandey S (2001) Meeting world maize: technological opportunities and priorities for the public sector. In: Pangali P (ed) 1999/2000 world maize facts and trends. CIMMYT, Texcoco, pp 1–9Google Scholar
  45. Reddy VM, Kumar VPK, Reddy VR, Balashouri P, Yule DF, Cogle AL, Jangawad LS (1995) Earthworm biomass response to soil management in semi-arid tropical Alfisol agroecosystems. Biol Fertil Soils 19:317–321Google Scholar
  46. Schmidt O, Curry JP (2001) Population dynamics of earthworms (Lumbricidae) and their role in nitrogen turnover in wheat and wheat-clover cropping systems. Pedobiologia 45:174–187Google Scholar
  47. Schmidt O, Clements RO, Donaldson G (2003) Why do cereal-legume intercrops support large earthworms populations? Appl Soil Ecol 22:181–190CrossRefGoogle Scholar
  48. Smyth TJ, Cravo MS, Melgar RJ (1991) Nitrogen supplied to corn by legumes in a central amazon oxisol. Trop Agric (Trinidad) 68:366–372Google Scholar
  49. Spain A, Saffigna PG, Wood AW (1990) Tissue C sources for Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in a sugarcane ecosystems. Biol Soil Biochem 22:703–706CrossRefGoogle Scholar
  50. StatSoft (1999) Statistica. StatSoft, ChicagoGoogle Scholar
  51. Tian G, Kang BT, Brussaard L (1997) Effect of mulch quality on earthworm activity and nutrient supply in the humid tropics. Soil Biol Biochem 29:369–373Google Scholar
  52. Tian G, Kolawole GO, Salako FK, Kang BT (1999) An improved cover crop–fallow system for sustainable management of low activity clays soils the tropics. Soil Sci 164:671–682Google Scholar
  53. Toledo M (1976) Los cambios climáticos del pleistoceno y sus efectos sobre la vegetación tropical cálida y húmeda de México. MSc thesis, UNAM, Mexico CityGoogle Scholar
  54. Vohland K, Schroth G (1999) Distribution patterns of the litter macrofauna in agroforestry and monoculture plantations in central Amazonia as affected by plant species and management. Appl Soil Ecol 13:57–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Departamento de Biología de SuelosInstituto de Ecología, A.C.Xalapa-EnríquezMéxico

Personalised recommendations