Biology and Fertility of Soils

, Volume 39, Issue 3, pp 146–152 | Cite as

Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms

  • Yelinda Araujo
  • Flavio J. Luizão
  • Eleusa Barros
Original Paper


The aim of the study was to determine the effect of adding two tropical earthworm species, Rhinodrilus contortus and Pontoscolex corethrurus, to mesocosms on the availability of mineral N (NH4 + and NO3 concentrations), soil microbial biomass (bio-N), and the decomposition rates of three contrasting leaf litter species, in a glasshouse experiment. The mesocosms were filled with forest soil and covered with a layer of leaf litter differing in nutritional quality: (1) Hevea brasiliensis (C/N=27); (2) Carapa guianensis (C/N=32); (3) Vismia sp., the dominant tree species in the second growth forest (control, C/N= 42); and, (4) a mixture of the former three leaf species, in equal proportions (C/N=34). At the end of the 97-day experiment, the soil mineral N concentrations, bio-N, and leaf litter weight loss were determined. Both earthworm species showed significant effects on the concentrations of soil NO3 (p<0.01) and NH4 + (p<0.05). Bio-N was always greater in the mesocosms with earthworms (especially with R. contortus) and in the mesocosms with leaf litter of H. brasiliensis (6 µg N g−1 soil), the faster decomposing species, than in the other treatments (0.1–1.6 µg N g−1). Thus, earthworm activity increased soil mineral-N concentrations, possibly due to the consumption of soil microbial biomass, which can speed turnover and mineralization of microbial tissues. No significant differences in decomposition rate were found between the mesocosms with and without earthworms, suggesting that experiments lasting longer are needed to determine the effect of earthworms on litter decomposition rates.


Earthworms Nitrogen mineralization Litter decomposition process Amazonia 



Funding was provided by projects PNOPG/CNPq 400033/99-2 and PPI 1-3200 INPA. Dr. Ilse Walker is thanked for the use of laboratory facilities in part of the work.


  1. Anderson JM, Huish SA, Ineson P, Leonard MA, Splatt PR (1985) Interactions of invertebrates, micro-organisms and tree roots in nitrogen and mineral element fluxes in deciduous woodland soils. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific Publications, Oxford, pp 377–392Google Scholar
  2. Araujo Y (2000) Oligoquetos sob adição de liteira e sua relação com a disponibilidade de nitrogênio em solos de capoeira na Amazônia central. Master Thesis, INPA/UA, ManausGoogle Scholar
  3. Atlavinyte O, Lugauskas A (1971) The effect of lumbricidae on soil microorganisms. Ann Zool Ecol Anim Spec Publ 4:73–80Google Scholar
  4. Barois I, Verdier B, Kaiser P, Mariotti A, Rangel P, Lavelle P (1987) Influence of the tropical earthworm Pontoscolex corethrurus (Glossoscolecidae) on fixation and mineralization of nitrogen. In: Boncini AM, Omodeo P (eds) On earthworms. Mucchi, Modena, pp 151–159Google Scholar
  5. Barros E (1999) Effet de la macrofauna sur la structure et les processus physiques du sol de paturages degrades d’Amazonie. These de Doctorat, Université Paris 6Google Scholar
  6. Barros E, Curmi P, Hallaire V, Chauvel A, Lavelle P (2001) Role of macrofauna in the transformation and reversibility of soil structure of an Oxisol during forest to pasture conversion. Geoderma 100:193–213CrossRefGoogle Scholar
  7. Barros E, Pashanasi B, Constantino R, Lavelle P (2002) Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biol Fert Soils 35:338–347CrossRefGoogle Scholar
  8. Beck L, Höfer H, Martius C, Garcia M, Franklin E, Römbke J (1998) Soil fauna and litter decomposition in primary forest, secondary forest and polyculture systems in Amazonia—study design and methodology (SHIFT Project ENV 52) In: Lieberei R, Voss K, Bianchi H (eds) Proc 3rd SHIFT Worksh, Manaus, Brazil, pp 463–469Google Scholar
  9. Blair JM, Parmelee RW, Allen MF, McCartney DA, Stinner BR (1997) Changes in soil N pools in response to earthworm population manipulations in agroecosystems with different N sources. Soil Biol Biochem 29:361–367Google Scholar
  10. Blanchart E, Bruand A, Lavelle P (1993) The physical structure of Millisonia anomala (Oligochaeta: Megascolecidae) casts in shrub savanna soils (Côte d’Ivoire). Geoderma 56:119–132CrossRefGoogle Scholar
  11. Bohlen PJ, Edwards CA (1995) Earthworm effect on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol Biochem 27:341–348CrossRefGoogle Scholar
  12. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842Google Scholar
  13. Decaens T, Lavelle P, Jimenez JJ, Escobar G, Rippstein G (1994) Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur J Soil Biol 30:157–168Google Scholar
  14. Decaens T, Rangel AF, Asakawa N, Thomas J (1999) Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the Eastern Plains of Colombia. Biol Fert Soils 30:20–28CrossRefGoogle Scholar
  15. Fragoso C, Brown GG, Patrón JC, Blanchart E, Lavelle P, Pashanasi B, Senapati B, Kumar T (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Appl Soil Ecol 6:17–35CrossRefGoogle Scholar
  16. González G, Zou X, Borges S (1996) Earthworm abundance and species composition in abandoned tropical croplands: comparisons of tree plantations and secondary forests. Pedobiologia 40:385–391Google Scholar
  17. Guerra RT (1988) Ecologia dos Oligochaeta da Amazônia. II Estudo da estivação e da atividade de Chibui bari (Glossoscolecidae, Oligochaeta), através da produção de excrementos. Acta Amazonica 18:27–34Google Scholar
  18. Guerra RT, Asakawa N (1981) Efeito da presença e do número de indivíduos de Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) sobre a população total de microorganismos do solo. Acta Amazonica 11:319–324Google Scholar
  19. Jennings DH (1989) Some perspectives on nitrogen and phosphorus metabolism in fungi. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 1–31Google Scholar
  20. Jiménez JJ, Moreno AG, Decaens T, Lavelle P, Fisher MJ, Thomas RJ (1998) Earthworm communities in native savannas and man-made pastures of the Eastern Plains of Colombia. Biol Fert Soils 28:101–110CrossRefGoogle Scholar
  21. Lavelle P (1988) Earthworm activities and the soil system. Biol Fert Soils 6:237–251Google Scholar
  22. Lavelle P (2000) Ecological challenges for soil science. Soil Sci 165:73–86CrossRefGoogle Scholar
  23. Lavelle P, Pashanasi B (1989) Soil macrofauna and land management in Peruvian Amazonia (Yurimaguas, Loreto). Pedobiologia 33:283–291Google Scholar
  24. Lavelle P, Barois I, Cruz I, Fragoso C, Hernandez A, Pineda A, Rangel P (1987) Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Fert Soils 5:188–194Google Scholar
  25. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  26. Lee K (1985) Earthworms: their ecology and relationships with soils and land use. Academic Press, New YorkGoogle Scholar
  27. Luizão FJ (1985) Influência da calagem e adubação orgânica na mesofauna e em algumas propriedades físicas de um Latossolo Amarelo textura argilosa. Rev Bras Ci Solo 9:81–84Google Scholar
  28. Luizão FJ, Schubart HOR (1987) Litter production and decomposition in ‘terra firme’ forest of the Central Amazonia. Experientia 43:259–285Google Scholar
  29. Maynard DG, Kalra YP (1993) Nitrate and exchangeable ammonium nitrogen. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, New York, pp 25–38Google Scholar
  30. Palm CA, Sanchez PA (1990) Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica 22:330–338Google Scholar
  31. Parle JN (1963) A microbial study of earthworm casts. J Gen Microbiol 31:13–22Google Scholar
  32. Pashanasi B, Melendez G, Szott L, Lavelle P (1992) Effect of inoculation with endogeic earthworm Ponstoscolex corethrurus (Glossoscolecidae) on N availability, soil microbial biomass and the growth of three tropical fruit tree seedlings in a pot experiment. Soil Biol Biochem 24:1655–1659CrossRefGoogle Scholar
  33. Römbke J, Verhaagh M (1992) About earthworm communities in a rain forest and an adjacent pasture in Peru. Amazoniana 12:29–49Google Scholar
  34. Scheu S (1987) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Soil Biol Biochem 5:230–234Google Scholar
  35. Shaw C, Pawluk S (1986) Faecal microbiology of Octolasion tyrtaeum, Aporrectodea turgida and Lumbricus terrestris and its relation to carbon budgets of three artificial soils. Pedobiologia 29:327–339Google Scholar
  36. Wardle D, Lavelle P (1997) Linkages between soil biota, plant litter quality and decomposition. In: Cadisch G, Giller KE (eds) Driven by nature. CAB International, Wallingford, pp 107–125Google Scholar
  37. Wilkinson L (1996) SYSTAT 6.0 for Windows. SPSS, Chicago, IllinoisGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Yelinda Araujo
    • 1
  • Flavio J. Luizão
    • 2
  • Eleusa Barros
    • 2
  1. 1.Instituto Nacional de Investigaciones Agrícolas (INIA-Mérida)Avenida Urdaneta, Edificio del Ministerio de Agricultura y TierrasMéridaVenezuela
  2. 2.National Institute for Research in Amazonia (INPA)ManausBrazil

Personalised recommendations