Graphs and Combinatorics

, Volume 36, Issue 1, pp 167–176 | Cite as

Long Paths in Bipartite Graphs and Path-Bistar Bipartite Ramsey Numbers

  • Michitaka FuruyaEmail author
  • Shun-ichi Maezawa
  • Kenta Ozeki
Original Paper


In this paper, we focus on a so-called Fan-type condition assuring us the existence of long paths in bipartite graphs. As a consequence of our main result, we completely determine the bipartite Ramsey numbers \(b(P_{s},B_{t_{1},t_{2}})\), where \(B_{t_{1},t_{2}}\) is the graph obtained from a \(t_{1}\)-star and a \(t_{2}\)-star by joining their centers.


Fan-type condition Bipartite Ramsey number Bistar Bipartite graph 

Mathematics Subject Classification

05C55 05C38 05C07 



This work was supported by JSPS KAKENHI Grant number 18K13449 (to M.F).


  1. 1.
    Alm, J.F., Hommowun, N., Schneider, A.: Mixed, multi-color, and bipartite Ramsey numbers involving trees of small diameter. arXiv:1403.0273 (preprint)
  2. 2.
    Christou, M., Iliopoulos, C.S., Miller, M.: Bipartite Ramsey numbers involving stars, stripes and trees. Electron. J. Graph Theory Appl. 1, 89–99 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Diestel, R.: Graph theory, 5th edn. In: Graduate Texts in Mathematics, vol. 173. Springer, New York (2017)CrossRefGoogle Scholar
  4. 4.
    Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fan, G.H.: New sufficient conditions for cycles in graphs. J. Comb. Theory Ser. B 37, 221–227 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Harary, F., Harborth, H., Mengersen, I.: Generalized Ramsey theory for graphs XII: bipartite Ramsey sets. Glasg. Math. J. 22, 31–41 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hattingh, J.H., Henning, M.A.: Star-path bipartite Ramsey numbers. Discrete Math. 185, 255–258 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hattingh, J.H., Joubert, E.J.: Some bistar bipartite Ramsey numbers. Graphs Comb. 30, 1175–1181 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, H.: Generalizations of Dirac’s theorem in Hamiltonian graph theory—a survey. Discrete Math. 313, 2034–2053 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lu, M., Liu, H., Tian, F.: Fan-type theorem for long cycles containing a specified edge. Graphs Comb. 21, 489–501 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Matsuda, H.: Fan-type results for the existence of \([a, b]\)-factors. Discrete Math. 306, 688–693 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Raeisi, G.: Star-path and star-stripe bipartite Ramsey numbers in multicoloring. Trans. Comb. 4, 37–42 (2015)MathSciNetGoogle Scholar
  13. 13.
    Yan, J., Zhang, S., Cai, J.: Fan-type condition on disjoint cycles in a graph. Discrete Math. 341, 1160–1165 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Liberal Arts and SciencesKitasato UniversitySagamiharaJapan
  2. 2.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  3. 3.Faculty of Environment and Information SciencesYokohama National UniversityYokohamaJapan

Personalised recommendations