Graphs and Combinatorics

, Volume 35, Issue 6, pp 1475–1493

# On Almost Empty Monochromatic Triangles and Convex Quadrilaterals in Colored Point Sets

Original Paper

## Abstract

Let S be a set of N points on the plane in general position, colored arbitrarily with c colors ($$c\in {\mathbb {N}}$$). A subset of points is said to be monochromatic if all its points have the same color. In this paper we show that if N is sufficiently large, then S contains a monochromatic triangle with vertices in S and containing at most $$c-3$$ points in its interior $$(c \ge 4)$$. The particular case $$c=4$$ solves the conjecture of Basu, Bhattacharya, and Das in . For the case of two colors, it is still unknown whether every sufficiently large bichromatic point set contains an empty monochromatic convex quadrilateral . In this direction we show that if S is sufficiently large, then it always contains a convex monochromatic quadrilateral with at most $$2c-3$$ points in its interior $$(c \ge 2)$$. We also show a general result on the number of empty convex quadrilaterals with disjoint interiors. Let P be a set of n points in general position. It is straightforward to see that if the elements of P are the vertices of a convex polygon, $$n \ge 4$$, P always has $$\left\lceil \frac{n-3}{2} \right\rceil$$ empty convex quadrilaterals with disjoint interiors. In this paper we prove that any point set P in general position has at least $$\left\lfloor \frac{n-3}{2}\right\rfloor$$ interior disjoint empty convex quadrilaterals. We also give direct consequences of this theorem related to simultaneously flippable edges in triangulations and convex decompositions of point sets. We show that for any point set P there is always a triangulation that has $$\left\lfloor \frac{n-3}{2}\right\rfloor$$ simultaneously flippable edges. We also show that there is always a convex decomposition of P consisting of triangles and convex quadrilaterals with at most $${3n-2h\over 2}$$ elements, where h is the number of points in the convex hull of P.

## Keywords

Colored point set Monochromatic triangle Monochromatic convex quadrilateral Almost empty Convex decomposition Flippable edge

## References

1. 1.
Aichholzer, O., Fabila-Monroy, R., Flores-Peñaloza, D., Hackl, T., Huemer, C., Urrutia, J.: Empty monochromatic triangles. Comput. Geom. Theory Appl. 42, 934–938 (2009)
2. 2.
Aichholzer, O., Fabila-Monroy, R., Gonzalez-Aguilar, H., Hackl, T., Heredia, M.A., Huemer, C., Urrutia, J., Valtr, P., Vogtenhuber, B.: On $$k$$-gons and $$k$$-holes in point sets. Comput. Geom. Theory Appl. 48(7), 528–537 (2015)
3. 3.
Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Vogtenhuber, B.: Large bichromatic point sets admit empty monochromatic 4-gons. SIAM J. Discret. Math. 23(4), 2147–2155 (2010)
4. 4.
Aichholzer, O., Hackl, T., Hoffmann, M., Pilz, A., Rote, G., Speckmann, B., Vogtenhuber, B.: Plane graphs with parity constraints, Proceedings Algorithms And Data Structures Symposium (WADS), LNCS 5664, pp. 13-24 (2009)Google Scholar
5. 5.
Aichholzer, O., Krasser, H.: The point set order type data base: A collection of applications and results, In Proceedings 13th Annual Canadian Conference on Computational Geometry CCCG 2001, pp. 17-20, Waterloo, Ontario, Canada (2001)Google Scholar
6. 6.
Basu, D., Bhattacharya, B., Das, S.: Almost empty monochromatic triangles in planar point sets. Electron. Notes Discret. Math. 44, 53–59 (2013)
7. 7.
Bose, P., Czyzowicz, J., Gao, Z., Morin, P., Wood, D.: Simultaneous diagonal flips in plane triangulations, In Proceedings of 17th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’06), pp. 212-221 (2006)Google Scholar
8. 8.
Bose, P., Toussaint, G.T.: Characterizing and efficiently computing quadrangulations of planar point sets. Comput. Aided Geom. Design 14, 763–785 (1997)
9. 9.
Cano, J., García, A., Hurtado, F., Sakai, T., Tejel, J., Urrutia, J.: Blocking the k-holes of point sets in the plane, Graphs and Combinatorics, pp. 1-17 (2014)Google Scholar
10. 10.
Czyzowicz, J., Kranakis, E., Urrutia, J.: Guarding the convex subsets of a point set, 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada, pp. 47-50, (August 16–19th 2000)Google Scholar
11. 11.
Devillers, O., Hurtado, F., Károlyi, G., Seara, C.: Chromatics variants of the Erdös-Szekeres theorem on points in convex position. Comput. Geom. 26, 193–208 (2003)
12. 12.
Erdös, P.: Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5, 52–54 (1978)
13. 13.
Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)
14. 14.
Erdös, P., Szekeres, G.: On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. Vol. 3-4, pp.53-62, (1960-61)Google Scholar
15. 15.
Fevens, T., Meijer, H., Rappaport, D.: Minimum convex partition of a constrained point set. Discret. Appl. Math. 109, 95–107 (2001)
16. 16.
Galtier, J., Hurtado, F., Noy, M., Perennes, S., Urrutia, J.: Simultaneous edge flipping in triangulations, International Journal of. Comput. Geom. 13(2), 113–133 (2004)
17. 17.
García-López, J., Nicolás, C.: Planar point sets with large minimum convex partitions, 22nd European Workshop on Computational Geometry, pp. 51–54. Delphi, Greece (2006)Google Scholar
18. 18.
Gerken, T.: Empty convex hexagons in planar point sets. Discret. Comput. Geom. 39, 239–272 (2008)
19. 19.
Harborth, H.: Konvexe funfecke in ebenen punktmengen. Elemente der Mathematik 33(5), 116–118 (1978)
20. 20.
Horton, J.D.: Sets with no empty convex 7-gons. Can. Math. Bull. 26, 482–484 (1983)
21. 21.
Hosono, K.: On convex decompositions of a planar point set. Discret. Math. 309(6), 1714–1717 (2009)
22. 22.
Huemer, C., Seara, C.: 36 Two-colored points with no empty monochromatic convex fourgons, Geombinatorics, Vol. XIX(1), pp. 5-6 (2009)Google Scholar
23. 23.
Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations, Discrete and Computational Geoemetry, Vol. 22, pp. 333-346, (1999). Also in Proceedings of 12 ACM Symposium on Computational Geometry, pp. 214-223, (May 24-26 1996)
24. 24.
Kalbfleisch, J., Stanton, R.: A combinatorial problem on convex n-gons, In Proc. Louisiana Conference on Combinatorics, Graph Theory and Computing, Louisiana State University, pp. 180-188 (1970)Google Scholar
25. 25.
Katchalski, M., Meir, A.: On empty triangles determined by points in the plane. Acta Mathematica Hungarica 51(3–4), 323–328 (1998)
26. 26.
Neumann, V., Rivera-Campo, E., Urrutia, J.: A note on convex decompositions. Graphs Comb. 20(2), 223–231 (2004)
27. 27.
Nicolás, C.M.: The empty hexagon theorem. Discret. Comput. Geom. 38, 389–397 (2007)
28. 28.
Nyklová, H.: Almost empty polygons. Studia Scientiarum Mathematicarum Hungarica 38, 269–286 (2003)
29. 29.
Pach, J., Tóth, G.: Monochromatic empty triangles in two-colored point sets. Discret. Appl. Math. 161(9), 1259–1261 (2013)
30. 30.
Sakai, T., Urrutia, J.: Convex decompositions of point sets in the plane. In: Proc. Japan Conference on Computational Geometry anf Graphs (JCCGG2009), Kanazawa, Japan, pp. 15-16 (2009)Google Scholar
31. 31.
Sakai, T., Urrutia, J.: Covering the convex quadrilaterals of point sets. Graphs Comb. 23, 343–358 (2007)
32. 32.
Souvaine D., Tóth C., A. Winslow A.: Simultaneously flippable edges in triangulations, Computational Geometry, Lecture Notes in Computer Science, Vol. 7579, pp. 138-145 (2012)
33. 33.
Szekeres, G., Peters, L.: Computer solution to the 17-point Erdös-Szekeres problem. ANZIAM J. 48(2), 151–164 (2006)
34. 34.
Tóth, G., Valtr, P.: The Erdös-Szekeres theorem: upper bounds and related results. Comb. Comput. Geom. 52, 557–568 (2005)
35. 35.
Valtr, P.: On empty hexagons, in J. E. Goodman, J. Pach, R. Pollack, Surveys on Discrete and Computational Geometry, Twenty Years Later, AMS, pp. 433-441 (2008)Google Scholar

© Springer Japan KK, part of Springer Nature 2019

## Authors and Affiliations

• Jorge Cravioto-Lagos
• 1
• Alejandro Corinto González-Martínez
• 1
• Toshinori Sakai
• 2
• Jorge Urrutia
• 3
1. 1.Posgrado en Ciencia e Ingeniería de la ComputaciónUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
2. 2.Department of MathematicsTokai UniversityTokyoJapan
3. 3.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMéxicoMéxico