Graphs and Combinatorics

, Volume 35, Issue 6, pp 1475–1493 | Cite as

On Almost Empty Monochromatic Triangles and Convex Quadrilaterals in Colored Point Sets

  • Jorge Cravioto-Lagos
  • Alejandro Corinto González-Martínez
  • Toshinori SakaiEmail author
  • Jorge Urrutia
Original Paper


Let S be a set of N points on the plane in general position, colored arbitrarily with c colors (\(c\in {\mathbb {N}}\)). A subset of points is said to be monochromatic if all its points have the same color. In this paper we show that if N is sufficiently large, then S contains a monochromatic triangle with vertices in S and containing at most \(c-3\) points in its interior \((c \ge 4)\). The particular case \(c=4\) solves the conjecture of Basu, Bhattacharya, and Das in [6]. For the case of two colors, it is still unknown whether every sufficiently large bichromatic point set contains an empty monochromatic convex quadrilateral [11]. In this direction we show that if S is sufficiently large, then it always contains a convex monochromatic quadrilateral with at most \(2c-3\) points in its interior \((c \ge 2)\). We also show a general result on the number of empty convex quadrilaterals with disjoint interiors. Let P be a set of n points in general position. It is straightforward to see that if the elements of P are the vertices of a convex polygon, \(n \ge 4\), P always has \(\left\lceil \frac{n-3}{2} \right\rceil \) empty convex quadrilaterals with disjoint interiors. In this paper we prove that any point set P in general position has at least \(\left\lfloor \frac{n-3}{2}\right\rfloor \) interior disjoint empty convex quadrilaterals. We also give direct consequences of this theorem related to simultaneously flippable edges in triangulations and convex decompositions of point sets. We show that for any point set P there is always a triangulation that has \(\left\lfloor \frac{n-3}{2}\right\rfloor \) simultaneously flippable edges. We also show that there is always a convex decomposition of P consisting of triangles and convex quadrilaterals with at most \({3n-2h\over 2}\) elements, where h is the number of points in the convex hull of P.


Colored point set Monochromatic triangle Monochromatic convex quadrilateral Almost empty Convex decomposition Flippable edge 



  1. 1.
    Aichholzer, O., Fabila-Monroy, R., Flores-Peñaloza, D., Hackl, T., Huemer, C., Urrutia, J.: Empty monochromatic triangles. Comput. Geom. Theory Appl. 42, 934–938 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aichholzer, O., Fabila-Monroy, R., Gonzalez-Aguilar, H., Hackl, T., Heredia, M.A., Huemer, C., Urrutia, J., Valtr, P., Vogtenhuber, B.: On \(k\)-gons and \(k\)-holes in point sets. Comput. Geom. Theory Appl. 48(7), 528–537 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Vogtenhuber, B.: Large bichromatic point sets admit empty monochromatic 4-gons. SIAM J. Discret. Math. 23(4), 2147–2155 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aichholzer, O., Hackl, T., Hoffmann, M., Pilz, A., Rote, G., Speckmann, B., Vogtenhuber, B.: Plane graphs with parity constraints, Proceedings Algorithms And Data Structures Symposium (WADS), LNCS 5664, pp. 13-24 (2009)Google Scholar
  5. 5.
    Aichholzer, O., Krasser, H.: The point set order type data base: A collection of applications and results, In Proceedings 13th Annual Canadian Conference on Computational Geometry CCCG 2001, pp. 17-20, Waterloo, Ontario, Canada (2001)Google Scholar
  6. 6.
    Basu, D., Bhattacharya, B., Das, S.: Almost empty monochromatic triangles in planar point sets. Electron. Notes Discret. Math. 44, 53–59 (2013)CrossRefGoogle Scholar
  7. 7.
    Bose, P., Czyzowicz, J., Gao, Z., Morin, P., Wood, D.: Simultaneous diagonal flips in plane triangulations, In Proceedings of 17th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA ’06), pp. 212-221 (2006)Google Scholar
  8. 8.
    Bose, P., Toussaint, G.T.: Characterizing and efficiently computing quadrangulations of planar point sets. Comput. Aided Geom. Design 14, 763–785 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cano, J., García, A., Hurtado, F., Sakai, T., Tejel, J., Urrutia, J.: Blocking the k-holes of point sets in the plane, Graphs and Combinatorics, pp. 1-17 (2014)Google Scholar
  10. 10.
    Czyzowicz, J., Kranakis, E., Urrutia, J.: Guarding the convex subsets of a point set, 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada, pp. 47-50, (August 16–19th 2000)Google Scholar
  11. 11.
    Devillers, O., Hurtado, F., Károlyi, G., Seara, C.: Chromatics variants of the Erdös-Szekeres theorem on points in convex position. Comput. Geom. 26, 193–208 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Erdös, P.: Some more problems on elementary geometry. Aust. Math. Soc. Gaz. 5, 52–54 (1978)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Erdös, P., Szekeres, G.: On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. Vol. 3-4, pp.53-62, (1960-61)Google Scholar
  15. 15.
    Fevens, T., Meijer, H., Rappaport, D.: Minimum convex partition of a constrained point set. Discret. Appl. Math. 109, 95–107 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Galtier, J., Hurtado, F., Noy, M., Perennes, S., Urrutia, J.: Simultaneous edge flipping in triangulations, International Journal of. Comput. Geom. 13(2), 113–133 (2004)zbMATHGoogle Scholar
  17. 17.
    García-López, J., Nicolás, C.: Planar point sets with large minimum convex partitions, 22nd European Workshop on Computational Geometry, pp. 51–54. Delphi, Greece (2006)Google Scholar
  18. 18.
    Gerken, T.: Empty convex hexagons in planar point sets. Discret. Comput. Geom. 39, 239–272 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Harborth, H.: Konvexe funfecke in ebenen punktmengen. Elemente der Mathematik 33(5), 116–118 (1978)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Horton, J.D.: Sets with no empty convex 7-gons. Can. Math. Bull. 26, 482–484 (1983)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hosono, K.: On convex decompositions of a planar point set. Discret. Math. 309(6), 1714–1717 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Huemer, C., Seara, C.: 36 Two-colored points with no empty monochromatic convex fourgons, Geombinatorics, Vol. XIX(1), pp. 5-6 (2009)Google Scholar
  23. 23.
    Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations, Discrete and Computational Geoemetry, Vol. 22, pp. 333-346, (1999). Also in Proceedings of 12 ACM Symposium on Computational Geometry, pp. 214-223, (May 24-26 1996)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kalbfleisch, J., Stanton, R.: A combinatorial problem on convex n-gons, In Proc. Louisiana Conference on Combinatorics, Graph Theory and Computing, Louisiana State University, pp. 180-188 (1970)Google Scholar
  25. 25.
    Katchalski, M., Meir, A.: On empty triangles determined by points in the plane. Acta Mathematica Hungarica 51(3–4), 323–328 (1998)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Neumann, V., Rivera-Campo, E., Urrutia, J.: A note on convex decompositions. Graphs Comb. 20(2), 223–231 (2004)CrossRefGoogle Scholar
  27. 27.
    Nicolás, C.M.: The empty hexagon theorem. Discret. Comput. Geom. 38, 389–397 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nyklová, H.: Almost empty polygons. Studia Scientiarum Mathematicarum Hungarica 38, 269–286 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pach, J., Tóth, G.: Monochromatic empty triangles in two-colored point sets. Discret. Appl. Math. 161(9), 1259–1261 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sakai, T., Urrutia, J.: Convex decompositions of point sets in the plane. In: Proc. Japan Conference on Computational Geometry anf Graphs (JCCGG2009), Kanazawa, Japan, pp. 15-16 (2009)Google Scholar
  31. 31.
    Sakai, T., Urrutia, J.: Covering the convex quadrilaterals of point sets. Graphs Comb. 23, 343–358 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Souvaine D., Tóth C., A. Winslow A.: Simultaneously flippable edges in triangulations, Computational Geometry, Lecture Notes in Computer Science, Vol. 7579, pp. 138-145 (2012)zbMATHGoogle Scholar
  33. 33.
    Szekeres, G., Peters, L.: Computer solution to the 17-point Erdös-Szekeres problem. ANZIAM J. 48(2), 151–164 (2006)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tóth, G., Valtr, P.: The Erdös-Szekeres theorem: upper bounds and related results. Comb. Comput. Geom. 52, 557–568 (2005)zbMATHGoogle Scholar
  35. 35.
    Valtr, P.: On empty hexagons, in J. E. Goodman, J. Pach, R. Pollack, Surveys on Discrete and Computational Geometry, Twenty Years Later, AMS, pp. 433-441 (2008)Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Posgrado en Ciencia e Ingeniería de la ComputaciónUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  2. 2.Department of MathematicsTokai UniversityTokyoJapan
  3. 3.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations