Advertisement

Graphs and Combinatorics

, Volume 35, Issue 1, pp 33–66 | Cite as

Graph Edge Coloring: A Survey

  • Yan Cao
  • Guantao Chen
  • Guangming JingEmail author
  • Michael Stiebitz
  • Bjarne Toft
Original Paper
  • 60 Downloads

Abstract

Graph edge coloring has a rich theory, many applications and beautiful conjectures, and it is studied not only by mathematicians, but also by computer scientists. In this survey, written for the non-expert, we shall describe some main results and techniques and state some of the many popular conjectures in the theory. Besides known results a new basic result about brooms is obtained.

Keywords

Chromatic index Edge coloring Adjacency lemma 

Notes

References

  1. 1.
    Akbari, S., Ghanbari, M., Kano, M., Nikmehr, M.J.: The chromatic index of a graph whose core has maximum degree \(2\). Electron. J. Comb. 19, #P58 (2012)Google Scholar
  2. 2.
    Akbari, S., Ghanbari, M., Nikmehr, M.J.: The chromatic index of a graph whose core is a cycle of order at most \(13\). Graphs Comb. 30, 801–819 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Akbari, S., Ghanbari, M., Ozeki, K.: The chromatic index of a claw-free graph whose core has maximum degree \(2\). Graphs Comb. 31, 805–811 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andersen, L.D.: On edge-colourings of graphs. Math. Scand. 40, 161–175 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Asplund, J., McDonald, J.: On a limit of the method of Tashkinov trees for edge-colouring. Discrete Math. 339, 2231–2238 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bej, S., Steffen, E.: Factors of edge-chromatic critical graphs: a brief survey and some equivalences. Lect. Notes Semin. Interdiscip. Mat. 14, 37–48 (2017)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Belcastro, S.M., Haas, R.: Counting edge-Kempe-equivalence classes for \(3\)-edge-colored cubic graphs. Discrete Math. 325, 77–84 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Belcastro, S.M., Haas, R.: Edge-Kempe-equivalence graphs of class-\(1\) regular graphs. Aust. J. Comb. 62, 197–2014 (2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bismarck de Sousa Cruz, J., Nunes da Silva, C., Morais de Almeida, S.: The overfull ocnjecture on split-comparability graphs (2017). arXiv:1710.03524v1 [math.CO] (manuscript; 10 Oct 2017)
  10. 10.
    Bruhn, H., Gellert, L., Lang, R.: Chromatic index, treewidth and maximum degree. Electron. J. Comb. 25, #P2.23 (2018)Google Scholar
  11. 11.
    Cai, J., Ellis, J.A.: NP-completeness of edge-colouring some restricted graphs. Discrete Appl. Math. 30, 15–27 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cao, Y., Chen, G.: Lower bound of the average degree of a \(\varDelta \)-critical graph (2018) (Manuscript )Google Scholar
  13. 13.
    Cao, Y., Chen, G., Jiang, S., Liu, H., Lu, F.: Average degree of edge-chromatic critical graphs (2017). arXiv:1708.01279v1 [math.CO] (Manuscript; 3 Aug 2017)
  14. 14.
    Cao, C., Chen, G., Jiang, S., Liu, H., Lu, F.: Hamiltonicity of edge-chromatic critical graphs (2017). arXiv:1708.08921v1 [math.CO] (manuscript; 29 Aug 2017)
  15. 15.
    Cao, C., Chen, G., Jing, G., Shan, S.: Independence number of edge-chromatic critical graphs (2018). arXiv:1805.05996v1 [math.CO] (manuscript ; 15 May 2018)
  16. 16.
    Cariolaro, D., Cariolaro, G.: Colouring the petals of a graph. Electron. J. Comb. 10, #R6 (2003)Google Scholar
  17. 17.
    Chen, G., Chen, X., Zhao, Y.: Hamiltonicity of edge chromatic critical graphs. Discrete Math. 340, 3011–3015 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chen, G., Gao, Y., Kim, R., Postle, L., Shan, S.: Chromatic index determined by fractional chromatic index. J. Comb. Theory Ser. B 131, 85–108 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, G., Jing, G.: Structural properties of edge-chromatic critical graphs (2017). arXiv:1709.04568v1 [math.CO] (manuscript ; 14 Sep 2017)
  20. 20.
    Chen, G., Shan, S.: Vizings 2-factor conjecture involving large maximum degree. J. Graph Theory 86, 422–438 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chen, G., Yu, X., Zang, W.: Approximating the chromatic index of multigraphs. J. Comb. Optim. 21, 219–246 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, X., Zang, W., Zhao, Q.: Densities, matchings, and fractional edge-colorings. SIAM J. Optim. http://hkumath.hku.hk/~imr/IMRPreprintSeries/2018/IMR2018-14.pdf
  23. 23.
    Cheng, J., Lorenzen, K.J., Luo, R., Thompson, J.: A note on the size of edge-chromatic \(4\)-critical graphs. Discrete Math. 339, 2393–2398 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chetwynd, A.G., Hilton, A.J.W.: Regular graphs of high degree are 1-factorizable. Proc. Lond. Math. Soc. 50, 193–206 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chetwynd, A.G., Hilton, A.J.W.: Star multigraphs with three vertices of maximum degree. Math. Proc. Camb. Philos. Soc. 100, 303–317 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chetwynd, A.G., Hilton, A.J.W.: 1-Factorizing regular graphs of high degree—an improved bound. Discrete Math. 75, 103–112 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chudnovsky, M., Edwards, K., Kawarabayashi, K., Seymour, P.: Edge-colouring seven-regular planar graphs. J. Comb. Theory Ser. B 115, 276–302 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Chudnovsky, M., Edwards, K., Seymour, P.: Edge-colouring eight-regular planar graphs. J. Comb. Theory Ser. B 115, 303–338 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Cranston, D.W., Rabern, L.: Subcubic edge chromatic index critcal graphs have many edges. J. Graph Theory 86, 122–136 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Cranston, D.W., Rabern, L.: Short, : fans and the \(5/6\) bound for line graphs (2016). arXiv:1610.03924v1 [math.CO] (manuscript; 13 Oct, 2016)
  31. 31.
    Cranston, D.W., Rabern, L.: The Hilton-Zhao conjecture is true for graphs with maximum degree 4 (2017). arXiv:1703.009594v1 [math.CO] (manuscript; 2 Mar 2018)
  32. 32.
    Csaba, B., Kühn, D., Lo, A., Osthus, D., Treglown, A.: Proof of the \(1\)-factorization and Hamilton decomposition conjectures. Mem. Am. Soc. 244, v+164 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Dvořák, Z., Kawarabayashi, K., Král’, D.: Packing six \(T\)-joins in plane graphs. J. Comb. Theory Ser. B 116, 287–305 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Edmonds, J.: Maximum matching and a polyhedron with 0–1 vertices. J. Res. Nat. Bur. Stand. Sect. B 69 B, 125–130 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Edwards, K.: Optimization and packing of \(T\)-joins and \(T\)-cuts in plane graphs. M.Sc. thesis, McGill University (2011)Google Scholar
  36. 36.
    Edwards, K., Girão, A., van den Heuvel, J., Kang, R.J., Puleo, G.J., Sereni, J.-S.: Extension from precolored sets of edges. Electron. J. Comb. 25, #P3.1 (2018)Google Scholar
  37. 37.
    Edwards, K., Sanders, D.P., Seymour, P., Thomas, R.: Three-edge-colouring doublecross cubic graphs. J. Comb. Theory Ser. B 119, 66–95 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Erdős, P., Wilson, R.J.: On the chromatic index of almost all graphs. J. Comb. Theory Ser. B 23, 255–257 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Favrholdt, L.M., Stiebitz, M., Toft, B.: Graph Edge Colouring: Vizing’s Theorem and Goldberg’s Conjecture. Techn. rep, DMF-2006-10-003, IMADA-PP-2006-20, University of Southern Denmark (2006) (preprint)Google Scholar
  40. 40.
    De Figueiredo, C.M.H., Meidanis, J., de Mello, C.P.: Local conditions for edge-colouring. J. Comb. Math. Comb. Comput. 32, 79–91 (2000)zbMATHGoogle Scholar
  41. 41.
    Fiorini, S., Wilson, R.J.: Edge-Colourings of Graphs. Research Notes in Mathematics, vol. 16. Pitman, London (1977)zbMATHGoogle Scholar
  42. 42.
    Fournier, J.C.: Coloration des arêtes d’un graphe. Cahiers Centre Études Recherche Opér. 15, 311–314 (1973)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Girão, A., Kang, R.J.: Precolouring extension of Vizings theorem (2016). arXiv:1611.09002v1 [math.CO] (manuscript; 28 Nov 2016)
  44. 44.
    Goldberg, M.K.: On multigraphs of almost maximal chromatic class (Russian). Diskret. Anal. 23, 3–7 (1973)Google Scholar
  45. 45.
    Goldberg, M.K.: Structure of multigraphs with restriction on the chromatic class (Russian). Diskret. Anal. 30, 3–12 (1977)Google Scholar
  46. 46.
    Goldberg, M.K.: Edge-coloring of multigraphs: recoloring technique. J. Graph Theory 8, 123–137 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Grünewald, S.: Chromatic index critical graphs and multigraphs. Doctoral thesis, Universität Bielefeld, Bielefeld (2000)Google Scholar
  48. 48.
    Guenin, B.: Packing \(T\)-joins and edge-colouring in planar graphs (2018) (manuscript in preparation)Google Scholar
  49. 49.
    Gupta., R.G.: Studies in the theory of graphs. Ph.D. thesis, Tata Institute of Fundamental Research, Bombay (1967)Google Scholar
  50. 50.
    Gupta, R.P.: On the chromatic index and the cover index of a multigraph. In: Donald, A., Eckmann, B. (eds.) Theory and Applications of Graphs, Proceedings, Michigan May 11–15, 1976. Lecture Notes in Mathematics, vol. 642, pp 204–215. Springer, Berlin, Heidelberg (1978)Google Scholar
  51. 51.
    Harrelson, J., McDonald, J., Puleo, G.J.: List-edge-colouring planar graphs with precoloured edges (2018). arXiv:1709.04027v3 [math.CO] (manuscript; 9 Jul 2018)
  52. 52.
    Haxell, P., Kierstaed, H.A.: Edge coloring multigraphs without small dense subsets. Discrete Math. 338, 2502–2506 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Haxell, P., Krivelevich, M., Kronenberg, G.: Goldberg’s conjecture is true for random multigraphs (2018). arXiv:1803.00908v1 [math.CO] (manuscript; 2 Mar 2018)
  54. 54.
    Haxell, P., McDonald, J.: On characterizing Vizing’s edge-colouring bound. J. Graph Theory 69, 160–168 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Heawood, P.J.: Map colour theorem. Q. J. Pure Appl. Math. 24, 332–338 (1890)zbMATHGoogle Scholar
  56. 56.
    Hilton, A.J.W., Zhao, C.: On the edge-colouring of graphs whose core has maximum degree two. J. Comb. Math. Comb. Comput. 21, 97–108 (1996)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Hochbaum, D.S., Nishizeki, T., Shmoys, D.B.: A better than “best possible” algorithm to edge color multigraphs. J. Algorithms 7, 79–104 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Holyer, I.: The NP-completeness of edge-colouring. SIAM J. Comput. 10, 718–720 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Huang, D., Wang, W.: Planar graphs of maximum degree six without seven cycles are class one. Electr. J. Comb. 19, #17 (2012)Google Scholar
  60. 60.
    Jakobsen, I.T.: On critical graphs with chromatic index 4. Discrete Math. 9, 265–276 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Jakobsen, I.T.: On critical graphs with respect to edge-coloring. In: Hajnal, A., Rado, R., Sós, V. (eds.) Infinite and Finite Sets, Colloq., Keszthely, 1973 (dedicated to P. Erdős on his 60th birthday), vol. II, Colloq. Math. Soc. János Bolyai, vol. 10, pp. 927–934. North-Holland, Amsterdam (1975)Google Scholar
  62. 62.
    Jin, J., Xu, B.: Edge coloring of \(1\)-planar graphs without intersecting triangles and chordal \(5\)-cycles. ARS Comb. 135, 71–81 (2017)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Jin, L., Kang, Y., Steffen, E.: Remarks on planar edge-chromatic critcal graphs. Discrete Appl. Math. 200, 200–202 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Kahn, J.: Asymptotics of the chromatic index for multigraphs. J. Comb. Theory Ser. B 68, 233–254 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Kanno, J., Shan, S.: Vizing’s 2-factor conjecture involving toughness and maximum degree (2017). arXiv:1709.02241v1 [math.CO] (manuscript; 5 Sep 2017)
  66. 66.
    Kierstead, H.A.: On the chromatic index of multigraphs without large triangles. J. Comb. Theory Ser. B 36, 156–160 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    König, D.: Über Graphen und ihre Anwendungen auf Determinantentheorie und Mengenlehre. Math. Ann. 77, 453–465 (1916)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Kostochka, A.: A new tool for proving Vizing’s theorem. Discrete Math. 326, 1–3 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Li, X., Wei, B.: Lower bounds on the number of edges in edge-chromatic critcal graphs with fixed maximum degrees. Discrete Math. 334, 1–12 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Luo, R., Miao, Z., Zhao, Y.: Hamiltonian cycles in critcal graphs with large maximum degree. Graphs Comb. 32, 2019–2028 (2016)CrossRefzbMATHGoogle Scholar
  71. 71.
    Luo, R., Zhao, Y.: A sufficient condition for edge chromatic critcal graphs to be Hamiltonian—an approach to Vizing’s \(2\)-factor conjecture. J. Graph Theory 73, 469–482 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Machado, R.C.S., de Figueiredo, C.M.H.: Decompositions for edge-coloring join graphs and cobipartite graphs. Discrete Appl. Math. 158, 1336–1342 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Machado, R.C.S., de Figueiredo, C.M.H., Trotignon, N.: Edge-colouring and total colouring chordless graphs. Discrete Math. 313, 1547–1552 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Marcotte, O.: Optimal edge-colorings for a class of planar multigraphs. Combinatorica 21, 361–394 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Marcotte, O., Seymour, P.: Extending an edge-coloring. J. Graph Theory 14, 565–573 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    McDonald, J.: On a theorem of Goldberg. J. Graph Theory 68, 8–21 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    McDonald, J.: Edge-colourings. In: Beineke, L.W., Wilson, R.J. (eds.) Topics in Chromatic Graph Theory. Cambridge University Press, Cambridge (2015)Google Scholar
  78. 78.
    McDonald, J.M., Puleo, G.J.: \(t\)-cores for \(\varDelta +t\)-edge-coloring (2017). arXiv:1710.089824v1 [math.CO] (manuscript; 24 Oct 2017)
  79. 79.
    Miao, L., Pang, S.: On the size of edge-coloring critical graphs with maximum degree \(4\). Discrete Math. 308, 5856–5859 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Miao, L., Qu, J., Sun, Q.: On the average degree of critcal graphs with maximum degree six. Discrete Math. 311, 2574–2576 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Morais de Almeida, S., Picinin de Mello, C., Morgana, A.: On the classification problem for split graphs. J. Braz. Comput. Soc. 18, 95–101 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Ni, W.-P., Wu, J.-L.: Edge coloring of planar graphs which any two short cycles are adjacent at most once. Theor. Comput. Sci. 516, 133–138 (2014)Google Scholar
  83. 83.
    Ni, W.-P., Wu, J.-L.: Edge coloring of planar graphs which any two short cycles are adjacent at most once. Theor. Comput. Sci. 516, 133–138 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Nishizeki, T., Kashiwagi, K.: On the 1.1-edge-coloring of multigraphs. SIAM J. Discrete Math. 3, 391–410 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Ozeki, K.: Kempe equivalence classes of cubic graphs (2017) (Manuscript)Google Scholar
  86. 86.
    Pang, S., Miao, L., Song, W., Miao, Z.: On the independence number of edge chromatic critical graphs. Discuss. Math. Graph Theory 34, 577–584 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Perković, L., Reed, B.: Edge coloring regular graphs of high degree. Discrete Math. 165(166), 567–578 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Plantholt, M.: A combined logarithmic bound on the chromatic index of multigraphs. J. Graph Theory 73, 239–259 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Plantholt, M., Tipnis, S.K.: All regular multigraphs of even order and high degree are 1-factorable. Electron. J. Comb. 8, #R41 (2001)Google Scholar
  90. 90.
    Puleo, G.J.: Maximal \(k\)-edge-colorable subgraphs, Vizing’s theorem, and Tuza’s conjecture (2017). arXiv:1510.07017v4 [math.CO] (manuscript; 6 Mar 2017)
  91. 91.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Semin. Univ. Hambg 29, 107–117 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: The four colour theorem. J. Comb. Theory Ser. B 70, 2–44 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Robertson, N., Seymour, P., Thomas, R.: Tutte’s edge-colouring conjecture. J. Comb. Theory Ser. B 70, 166–183 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Robertson, N., Seymour, P., Thomas, R.: Excluded minors in cubic graphs (2014). arXiv:1402.2118v1 [math.CO] (manuscript; 9 Mar 2014)
  95. 95.
    Sanders, P., Steurer, D.: An asymptotic approximation scheme for multigraph edge coloring. ACM Trans. Algorithms 4, 21 (2008)Google Scholar
  96. 96.
    Sanders, D., Thomas, R.: Edge three-cubic apex graphs (2018) (manuscript in preparation)Google Scholar
  97. 97.
    Sanders, D., Zhao, Y.: Planar graphs of maximum degree seven are class I. J. Comb. Theory Ser. B 83, 201–212 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  98. 98.
    Scheide, D.: Edge Colourings of Multigraphs. Doctoral thesis., TU Ilmenau, Ilmenau (2008)Google Scholar
  99. 99.
    Scheide, D.: Graph edge colouring: Tashkinov trees and Goldberg’s conjecture. J. Comb. Theory Ser. B 100, 68–96 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  100. 100.
    Scheide, D., Stiebitz, M.: On Vizing’s bound for the chromatic index of a multigraph. Discrete Math. 309, 4920–4925 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  101. 101.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)zbMATHGoogle Scholar
  102. 102.
    Seymour, P.: On multicolorings of cubic graphs, and conjectures of Fulkerson and Tutte. Proc. Lond. Math. Soc. 38, 423–460 (1979)CrossRefzbMATHGoogle Scholar
  103. 103.
    Seymour, P.: On Tutte’s extension of the four-color problem. J. Comb. Theory Ser. B 31, 82–94 (1981)CrossRefzbMATHGoogle Scholar
  104. 104.
    Seymour, P.: Colouring series-parallel graphs. Combinatorica 10, 379–392 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  105. 105.
    Shannon, C.E.: A theorem on coloring the lines of a network. J. Math. Phys. 28, 148–151 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  106. 106.
    De Simone, C., Galluccio, A.: Edge-colouring of joins of regular graphs II. J. Comb. Optim. 25, 78–90 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  107. 107.
    Steffen, E.: Approximating Vizing’s independence number conjecture. Aust. J. Comb. 71, 153–160 (2018)MathSciNetGoogle Scholar
  108. 108.
    Stiebitz, M., Scheide, D., Toft, B., Favrholdt, L.: Graph Edge Coloring: Vizing’s Theorem and Goldberg’s Conjecture. Wiley, New York (2012)zbMATHGoogle Scholar
  109. 109.
    Tait, P.G.: On the colouring of maps. Proc. R. Soc. Edinb. Sect. A 10, 501–503, 729 (1978–1980)Google Scholar
  110. 110.
    Tashkinov, V.A.: On an algorithm for the edge coloring of multigraphs (Russian). Diskretn. Anal. Issled. Oper. Ser. 1(7), 72–85 (2000)MathSciNetzbMATHGoogle Scholar
  111. 111.
    Tutte, W.: On the algebraic theory of graph colorings. J. Comb. Theory Ser. B 23, 15–50 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  112. 112.
    Tuza, Z.: A conjecture on triangles of graphs. Graphs Comb. 6, 373–380 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  113. 113.
    Vaughan, E.R.: An asymptotic version of the multigraph \(1\)-factorization conjecture. J. Graph Theory 72, 19–29 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  114. 114.
    Vizing, V.G.:. On an estimate of the chromatic class of a \(p\)-graph (Russian). Diskret. Anal.3, 25–30 (1964) [English translation in (108, App. A1)]Google Scholar
  115. 115.
    Vizing, V.G.: The chromatic class of a multigraph (Russian). Kibernetika (Kiev) 3, 29–39 (1965) [English translation in: Cybernetics and System Analysis 1, 32–41 (1965)]Google Scholar
  116. 116.
    Vizing, V.G.: Critical graphs with a given chromatic class (Russian). Diskret. Anal. 5, 9–17 (1965) [English translation in (108, App. A1)]Google Scholar
  117. 117.
    Vizing, V.G.: Some unsolved problems in graph theory (Russian). Uspekhi Mat. Nauk 23, 117–134 (1968) [English translation in: Russian Mathematical Surveys 23, 125–141 (1968)]Google Scholar
  118. 118.
    Wang, Y.: Edge coloring of graphs embedded in a surface of negative characteristic. Acta Math. Appl. Sin. Engl. Ser. 33, 709–716 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  119. 119.
    Wang, Y., Xu, L.: A sufficient condition for a plane graph with maximum degree 6 to be class \(1\). Discrete Appl. Math. 161, 307–310 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  120. 120.
    Woodall, D.R.: The average degree of an edge-chromatic critical graph II. J. Graph Theory 56, 194–218 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  121. 121.
    Woodall, D.R.: The independence number of an edge-chromatic critical graph. J. Graph Theory 66, 98–103 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  122. 122.
    Woodall, D.R.: Edge-chromatic 3-critical graphs have more edges (2018) (Manuscript)Google Scholar
  123. 123.
    Wu, J.-L., Xue, L.: Edge colorings of planar graphs without \(5\)-cycles with two chords. Theor. Comput. Sci. 518, 124–127 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  124. 124.
    Zhang, L.: Every planar graph with maximum degree 7 is class I. Graphs Comb. 16, 467–495 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  125. 125.
    Zhang, W., Wu, J.-L.: Some sufficient conditions for \(1\)-planar graphs to be class \(1\). Theor. Comput. Sci. 566, 50–58 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  126. 126.
    Zhang, W., Wu, J.-L.: Edge coloring of planar graph without adjacent \(7\)-cycles. Theor. Comput. Sci. 739, 59–64 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  127. 127.
    Zhang, X.: The edge chromatic number of outer-\(1\)-planar graphs. Discrete Math. 339, 1393–1399 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  128. 128.
    Zhang, X., Liu, G.: On edge colorings \(1\)-planar graphs without adjacent triangles. Inf. Process. Lett. 112, 138–142 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  129. 129.
    Zhang, X., Liu, G.: On edge colorings \(1\)-planar graphs without chordal \(5\)-cycles. ARS Comb. 104, 431–436 (2012)MathSciNetzbMATHGoogle Scholar
  130. 130.
    Zhang, X., Wu, J.-L.: On edge colorings \(1\)-planar graphs. Inf. Process. Lett. 111, 124–128 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  131. 131.
    Zorzi, A., Zatesko, L.M.: On the chromatic index of join graphs and triangle-free graphs with large maximum degree. Discrete Appl. Math. 245, 183–189 (2018)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsGeorgia State UniversityAtlantaUSA
  2. 2.School of Mathematics and StatisticsCentral China Normal UniversityWuhanChina
  3. 3.Technische Universität Ilmenau, Institute of MathematicsIlmenauGermany
  4. 4.Mathematics and Computer Science University of Southern DenmarkOdense MDenmark

Personalised recommendations