Graphs and Combinatorics

, Volume 33, Issue 4, pp 859–868 | Cite as

Acyclic Chromatic Index of Triangle-free 1-Planar Graphs

  • Jijuan Chen
  • Tao WangEmail author
  • Huiqin Zhang
Original Paper


An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index \(\chi _{a}'(G)\) of a graph G is the least number of colors in an acyclic edge coloring of G. It was conjectured that \(\chi '_{a}(G)\le {\varDelta }(G) + 2\) for any simple graph G with maximum degree \({\varDelta }(G)\). A graph is 1-planar if it can be drawn on the plane such that every edge is crossed by at most one other edge. In this paper, we show that every triangle-free 1-planar graph G has an acyclic edge coloring with \({\varDelta }(G) + 16\) colors.


Acyclic edge coloring Acyclic chromatic index \(\kappa \)-Deletion-minimal graph 1-Planar graph 



The authors would like to thank the anonymous referees for their valuable comments and careful reading of this paper.


  1. 1.
    Alon, N., McDiarmid, C., Reed, B.: Acyclic coloring of graphs. Random Struct. Algorithms 2(3), 277–288 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N., Sudakov, B., Zaks, A.: Acyclic edge colorings of graphs. J. Graph Theory 37(3), 157–167 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Basavaraju, M., Chandran, L.S., Cohen, N., Havet, F., Müller, T.: Acyclic edge-coloring of planar graphs. SIAM J. Discrete Math. 25(2), 463–478 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Esperet, L., Parreau, A.: Acyclic edge-coloring using entropy compression. Eur. J. Combin. 34(6), 1019–1027 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fiamčík, I.: The acyclic chromatic class of a graph. Math. Slovaca 28(2), 139–145 (1978)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fiedorowicz, A., Hałuszczak, M., Narayanan, N.: About acyclic edge colourings of planar graphs. Inform. Process. Lett. 108(6), 412–417 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Giotis, I., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: On the algorithmic Lovász local lemma and acyclic edge coloring. In: 2015 Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 16–25. SIAM, Philadelphia, PA (2015)Google Scholar
  8. 8.
    Guan, Y., Hou, J., Yang, Y.: An improved bound on acyclic chromatic index of planar graphs. Discrete Math. 313(10), 1098–1103 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hou, J., Roussel, N., Wu, J.: Acyclic chromatic index of planar graphs with triangles. Inform. Process. Lett. 111(17), 836–840 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hou, J., Wu, J., Liu, G., Liu, B.: Acyclic edge colorings of planar graphs and series-parallel graphs. Sci. China Ser. A 52(3), 605–616 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Molloy, M., Reed, B.: Further algorithmic aspects of the local lemma. In: Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, pp. 524–529. ACM, New York (1998)Google Scholar
  12. 12.
    Ndreca, S., Procacci, A., Scoppola, B.: Improved bounds on coloring of graphs. Eur. J. Combin. 33(4), 592–609 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamburg 29(1), 107–117 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shu, Q., Wang, W., Wang, Y.: Acyclic chromatic indices of planar graphs with girth at least 4. J. Graph Theory 73(4), 386–399 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Song, W., Miao, L.: Acyclic edge coloring of triangle-free 1-planar graphs. Acta Math. Sin. (Engl. Ser.) 31(10), 1563–1570 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, T., Zhang, Y.: Acyclic edge coloring of graphs. Discrete Appl. Math. 167, 290–303 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, T., Zhang, Y.: Further result on acyclic chromatic index of planar graphs. Discrete Appl. Math. 201, 228–247 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, W., Shu, Q., Wang, Y.: A new upper bound on the acyclic chromatic indices of planar graphs. Eur. J. Combin. 34(2), 338–354 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  1. 1.Institute of Applied MathematicsHenan UniversityKaifengPeople’s Republic of China

Personalised recommendations