Advertisement

Graphs and Combinatorics

, Volume 31, Issue 2, pp 407–425 | Cite as

Geometric Biplane Graphs I: Maximal Graphs

  • Alfredo García
  • Ferran Hurtado
  • Matias Korman
  • Inês Matos
  • Maria Saumell
  • Rodrigo I. Silveira
  • Javier Tejel
  • Csaba D. Tóth
Original Paper

Abstract

We study biplane graphs drawn on a finite planar point set \(S\) in general position. This is the family of geometric graphs whose vertex set is \(S\) and can be decomposed into two plane graphs. We show that two maximal biplane graphs—in the sense that no edge can be added while staying biplane—may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane graph to make it maximal. We also study extremal properties of maximal biplane graphs such as the maximum number of edges and the largest maximum connectivity over \(n\)-element point sets.

Keywords

Geometric graphs Biplane graphs Maximal biplane graphs \(k\)-Connected graphs Graph augmentation 

Notes

Acknowledgments

A. G., F. H., M. K., R.I. S. and J. T. were partially supported by ESF EUROCORES Programme EuroGIGA, CRP ComPoSe: Grant EUI-EURC-2011-4306, and by Project MINECO MTM2012-30951/FEDER. F. H., and R.I. S. were also supported by Project Gen. Cat. DGR 2009SGR1040. A. G. and J. T. were also supported by Project E58-DGA. M. K. was supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the European Union. I. M. was supported by FEDER funds through COMPETE–Operational Programme Factors of Competitiveness, CIDMA and FCT within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. M. S. was supported by the Project NEXLIZ - CZ.1.07/2.3.00/30.0038, which is co-financed by the European Social Fund and the state budget of the Czech Republic, and by ESF EuroGIGA Project ComPoSe as F.R.S.-FNRS—EUROGIGA NR 13604. R. S. was funded by Portuguese Funds through CIDMA (Center for Research and Development in Mathematics and Applications) and FCT (Fundação para a Ciência e a Tecnologia), within Project PEst-OE/MAT/UI4106/2014, and by FCT Grant SFRH/BPD/88455/2012.

References

  1. 1.
    Abellanas, M., García, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the connectivity of geometric graphs. Comput. Geom. Theory Appl. 40(3), 220–230 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs. Ann. Discret. Math. 12, 9–12 (1982)zbMATHGoogle Scholar
  3. 3.
    Al-Jubeh, M., Barequet, G., Ishaque, M., Souvaine, D.L., Tóth, C.D., Winslow, A.: Constrained tri-connected planar straight line graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 49–70. Springer, New York (2013)CrossRefGoogle Scholar
  4. 4.
    Al-Jubeh, M., Ishaque, M., Rédei, K., Souvaine, D.L., Tóth, C.D., Valtr, P.: Augmenting the edge connectivity of planar straight line graphs to three. Algorithmica 61(4), 971–999 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Barnette, D.: On generating planar graphs. Discret. Math. 7, 199–208 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Beineke, L.W.: Biplanar Graphs: a survey. Comput. Math. Appl. 34(11), 1–8 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brinkmann, G., Goedgebeur, J., McKay, B.D.: The generation of fullerenes. J. Chem. Inf. Model. 52(11), 2910–2918 (2012)CrossRefGoogle Scholar
  8. 8.
    Chartrand, G., Lesniak, L.: Graphs and Digraphs. Chapman and Hall/CRC, Boca Raton (2005)zbMATHGoogle Scholar
  9. 9.
    Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Doslic, T.: Cyclical edge-connectivity of fullerene graphs and \((k, 6)\)-cages. J. Math. Chem. 33, 103–112 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Eades, P., Hong, S.-H., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Proceedings of 18th COCOON, LNCS 7434, pp. 335–346. Springer, New York (2012)Google Scholar
  12. 12.
    Eppstein, D.: Testing bipartiteness of geometric intersection graphs. ACM Trans. Algorithms 5(2), article 15 (2009)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. (Szeged) 11, 229–233 (1948)zbMATHGoogle Scholar
  14. 14.
    García, A., Hurtado, F., Korman, M., Matos, I., Saumell, M., Silveira, R.I., Tejel, J., Tóth, C.D.: Geometric biplane graphs I: maximal graphs. Extended abstract. In: Proceedings of Mexican conference on discrete mathematics and computational geometry, Oaxaca, México, pp. 123–134 (2013)Google Scholar
  15. 15.
    García, A., Hurtado, F., Korman, M., Matos, I., Saumell, M., Silveira, R.I., Tejel, J., Tóth, C.D.: Geometric biplane graphs II: graph augmentation. Extended abstract. In: Proceedings of Mexican conference on discrete mathematics and computational geometry, Oaxaca, México, pp. 223–234 (2013)Google Scholar
  16. 16.
    Giménez, O., Noy, M.: Asymptotic enumeration and limit laws of planar graphs. J. AMS 22(2), 309–329 (2009)zbMATHGoogle Scholar
  17. 17.
    Hoffmann, M., Schulz, A., Sharir, M., Sheffer, A., Tóth, C.D., Welzl, E.: Counting plane graphs: flippability and its applications. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 303–326. Springer, New York (2013)CrossRefGoogle Scholar
  18. 18.
    Hurtado, F., Tóth, C.D.: Plane geometric graph augmentation: a generic perspective. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 327–354. Springer, New York (2013)CrossRefGoogle Scholar
  19. 19.
    Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-two graphs. Comput. Geom. Theory Appl. 13, 161–171 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. In: Proceedings of 16th graph drawing, LNCS 5417, pp. 302–312. Springer, New York (2009)Google Scholar
  21. 21.
    Lee, D.T., Lin, A.K.: Generalized Delaunay triangulation for planar graphs. Discret. Comput. Geom. 1, 201–217 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. J. Graph Algorithms Appl. 16(2), 599–628 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Comb. 18(1), 1–74 (2011)Google Scholar
  24. 24.
    Tóth, C.D.: Connectivity augmentation in planar straight line graphs. Eur. J. Comb. 33(3), 408–425 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Alfredo García
    • 1
  • Ferran Hurtado
    • 2
  • Matias Korman
    • 3
  • Inês Matos
    • 4
  • Maria Saumell
    • 5
  • Rodrigo I. Silveira
    • 2
  • Javier Tejel
    • 1
  • Csaba D. Tóth
    • 6
  1. 1.Departamento de Métodos Estadísticos, IUMAUniversidad de ZaragozaZaragozaSpain
  2. 2.Departament de Matemàtica Aplicada IIUPCBarcelonaSpain
  3. 3.Erato Kawarabayashi Large Graph ProjectJST, National Institute of Informatics (NII)TokyoJapan
  4. 4.Departamento de Matemática and CIDMAUniversidade de AveiroAveiroPortugal
  5. 5.Department of Mathematics and European Centre of Excellence NTIS (New Technologies for the Information Society)University of West BohemiaPilsenCzech Republic
  6. 6.Department of MathematicsCalifornia State University NorthridgeLos AngelesUSA

Personalised recommendations