Graphs and Combinatorics

, Volume 31, Issue 2, pp 393–405 | Cite as

Monitoring the Plane with Rotating Radars

  • J. Czyzowicz
  • S. Dobrev
  • B. Joeris
  • E. Kranakis
  • D. Krizanc
  • J. Maňuch
  • O. Morales-Ponce
  • J. Opatrny
  • L. Stacho
  • J. Urrutia
Original Paper


Consider a set \(P\) of \(n\) points in the plane and \(n\) radars located at these points. The radars are rotating perpetually (around their centre) with identical constant speeds, continuously emitting pulses of radio waves (modelled as half-infinite rays). A radar can “locate” (or detect) any object in the plane (e.g., using radio echo-location when its ray is incident to the object). We propose a model for monitoring the plane based on a system of radars. For any point \(p\) in the plane, we define the idle time of \(p\), as the maximum time that \(p\) is “unattended” by any of the radars. We study the following monitoring problem: what should the initial direction of the \(n\) radar rays be so as to minimize the maximum idle time of any point in the plane? We propose algorithms for specifying the initial directions of the radar rays and prove bounds on the idle time depending on the type of configuration of \(n\) points. For arbitrary sets \(P\) we give a \(O(n \log n)\) time algorithm guaranteeing a \(O(1/\sqrt{n})\) upper bound on the idle time, and a \(O(n^{6}/\ln ^{3} n)\) time algorithm with associated \(O ( \log n/ n)\) upper bound on the idle time. For a convex set \(P\), we show a \(O(n \log n)\) time algorithm with associated \(O(1/n)\) upper bound on the idle time. Further, for any set \(P\) of points if the radar rays are assigned a direction independently at random with the uniform distribution then we can prove a tight \(\varTheta (\ln n /n)\) upper and lower bound on the idle time with high probability.


Convex Detection Idle time Monitor Orientation Patrol Plane Points Radar Random (Light) Ray 



Authors acknowledge partial support from NSERC, VEGA, and Conacyt. Many thanks to the anonymous referees for comments that improved the overall presentation of the paper.


  1. 1.
    Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V., Chevaleyre, Y.: Recent advances on multi-agent patrolling. In: Advances in Artificial Intelligence-SBIA 2004, LNCS, vol. 3171, pp. 474–483. Springer, Berlin (2004)Google Scholar
  2. 2.
    Bereg, S., Diaz-Bánez, J.M., Fort, M., Lopez, M.A., Prez-Lantero, P., Urrutia, J.: Continuous surveillance of points by rotating floodlights. In: XV Spanish Meeting on Computational Geometry, pp. 3–6 (2013)Google Scholar
  3. 3.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Santa Clara (2008)CrossRefGoogle Scholar
  4. 4.
    Bose, P., Guibas, L., Lubiw, A., Overmars, M., Souvaine, D., Urrutia, J.: The floodlight problem. Int. J. Comput. Geom. Appl. 7, 153–163 (1993)Google Scholar
  5. 5.
    Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04), pp. 302–308 (2004)Google Scholar
  6. 6.
    Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot polyline patrolling. In: AAMAS, vol. 1, pp. 63–70 (2008)Google Scholar
  8. 8.
    Fusco, G., Gupta, H.: Placement and orientation of rotating directional sensors. In: Sensor Mesh and Ad Hoc Communications and Networks (SECON), 2010 7th Annual IEEE Communications Society Conference on, pp. 1–9. IEEE (2010)Google Scholar
  9. 9.
    Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multiple robots. Robotics Auton. Syst. 56(12), 1102–1114 (2008)CrossRefGoogle Scholar
  10. 10.
    Kranakis, E., MacQuarrie, F., Morales-Ponce, O., Urrutia, J.: Uninterrupted coverage of a planar region with rotating directional antennae. In: Proceedings of ADHOCNOW. LNCS, vol. 7363, pp. 56–68. Springer, NY (2012)Google Scholar
  11. 11.
    Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical analysis of alternative architectures. In: Proceeding of the 3rd international conference on Multi-agent-based simulation II, MABS 2002, LNCS, vol. 2581, pp. 155–170. Springer, Berlin (2003)Google Scholar
  12. 12.
    Obermeyer, K.J., Ganguli, A., Bullo, F.: A complete algorithm for searchlight scheduling. Int. J. Comput. Geom. Appl. 21(01), 101–130 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    O’Rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  14. 14.
    Penrose, M.: Random Geometric Graphs, vol. 5. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Steiger, W., Streinu, I.: Illumination by floodlights. Comput. Geom. 10(1), 57–70 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37(3), 165–186 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • J. Czyzowicz
    • 1
  • S. Dobrev
    • 2
  • B. Joeris
    • 3
  • E. Kranakis
    • 4
  • D. Krizanc
    • 5
  • J. Maňuch
    • 6
  • O. Morales-Ponce
    • 7
  • J. Opatrny
    • 8
  • L. Stacho
    • 6
  • J. Urrutia
    • 9
  1. 1.Université du Québec en OutaouaisGatineauCanada
  2. 2.Institute of MathematicsSlovak Academy of ScienceBratislavaSlovak Republic
  3. 3.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  4. 4.School of Computer ScienceCarleton UniversityOttawaCanada
  5. 5.Department of MathematicsWesleyan UniversityMiddletownUSA
  6. 6.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  7. 7.University of Information Science and Technology, St Paul. the ApostleOhridMacedonia
  8. 8.Department Computer Science and EngineeringConcordia UniversityMontrealCanada
  9. 9.Instituto de MatematicasUNAMMexico CityMexico

Personalised recommendations