Advertisement

Graphs and Combinatorics

, Volume 31, Issue 6, pp 2003–2017 | Cite as

Injective Colorings with Arithmetic Constraints

  • N. Astromujoff
  • M. Chapelle
  • M. Matamala
  • I. Todinca
  • J. Zamora
Original Paper
  • 127 Downloads

Abstract

An injective coloring of a graph is a vertex labeling such that two vertices sharing a common neighbor get different labels. In this work we introduce and study what we call additive  colorings. An injective coloring \(c:V(G)\rightarrow \mathbb {Z}\) of a graph \(G\) is an additive coloring if for every \(uv, vw\) in \(E(G)\), \(c(u)+c(w)\ne 2c(v)\). The smallest integer \(k\) such that an injective (resp. additive) coloring of a given graph \(G\) exists with \(k\) colors (resp. colors in \(\{1,\ldots ,k\}\)) is called the injective (resp. additive) chromatic number (resp. index). They are denoted by \(\chi _i(G)\) and \(\chi '_a(G)\), respectively. In the first part of this work, we present several upper bounds for the additive chromatic index. On the one hand, we prove a super linear upper bound in terms of the injective chromatic number for arbitrary graphs, as well as a linear upper bound for bipartite graphs and trees. Complete graphs are extremal graphs for the super linear bound, while complete balanced bipartite graphs are extremal graphs for the linear bound. On the other hand, we prove a quadratic upper bound in terms of the maximum degree. In the second part, we study the computational complexity of computing \(\chi '_a(G)\). We prove that it can be computed in polynomial time for trees. We also prove that for bounded treewidth graphs, to decide whether \(\chi '_a(G)\le k\), for a fixed \(k\), can be done in polynomial time. On the other hand, we show that for cubic graphs it is NP-complete to decide whether \(\chi '_a(G)\le 4\). We also prove that for every \(\epsilon >0\) there is a polynomial time approximation algorithm with approximation factor \(n^{1/3+\epsilon }\) for \(\chi '_a(G)\), when restricted to split graphs. However, unless \(\mathsf P =\mathsf NP \), for every \(\epsilon >0\) there is no polynomial time approximation algorithm with approximation factor \(n^{1/3-\epsilon }\) for \(\chi '_a(G)\), even when restricted to split graphs.

Keywords

Injective colorings Dynamic programming NP-completeness Polynomial time algorithms 

References

  1. 1.
    Behrend, F.A.: On the sets of integers which contain no three in arithmetic progression. Proc. Natl. Acad. Sci. 23, 331–332 (1946)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bourgain, J.: On triples in arithmetic progression. Geom. Funct. Anal. 9, 968–984 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brooks, R.L.: On colouring the nodes of a network. Proc. Camb. Phil. Soc. Math. Phys. Sci. 37, 194–197 (1941)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chang, G.J., Kuo, D.: The \(L(2, 1)\)-labeling problem on graphs. SIAM J. Discrete Math. 9(2), 309–316 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Elkin, M.: An improved construction of progession-free sets. In: SODA: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 886–905 (2010)Google Scholar
  7. 7.
    Erdös, P., Turán, P.: On some sequences of integers. J. Lond. Math. Soc. 11, 261–264 (1936)CrossRefGoogle Scholar
  8. 8.
    Feige, U., Killian, J.: Zero knowledge and the chromatic number. J. Comput. Syst. Sci. 57, 187–199 (1998)CrossRefMATHGoogle Scholar
  9. 9.
    Fiala, J., Golovach, P.A., Kratochvíl, J.: Computational complexity of the distance constrained labeling problem for trees (extended abstract). ICALP 1, 294–305 (2008)Google Scholar
  10. 10.
    Gasarch, W., Glenn, J., Kruskal, C.: Finding large 3-free sets. I. The small \(n\) case. J. Comput. System Sci. 74(4), 628–655 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Griggs, J.R., Yeh, R.K.: Labeling graphs with a condition at distance 2. SIAM J. Disc. Math. 5, 586–595 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hahn, G., Kratochvîl, J., Širáň, J., Sotteau, D.: On the injective chromatic number of graphs. Discrete Math. 256(1–2), 179–192 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Heath-Brown, D.: Integer sets containing no arithmetic progressions. Proc. Lond. Math Soc. 35(2), 385–394 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hell, P., Raspaud, A., Stacho, J.: On injective colourings of chordal graphs. In: LATIN: Proceeding Theoretical Informatics, 8th Latin American Symposium, pp. 520–530 (2008)Google Scholar
  15. 15.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for \(L(2, 1)\)-labeling of trees. ESA, pp. 35–46 (2009)Google Scholar
  17. 17.
    Roth, K.: Sur quelques ensembles d’ entiers. C.R. Acad. Sci Paris 234, 388–390 (1952)MathSciNetMATHGoogle Scholar
  18. 18.
    Roth, K.: On certain sets of integers. J. Lond. Math. Soc. 28, 104–109 (1953)CrossRefMATHGoogle Scholar
  19. 19.
    Singer, J.: A theorem of finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43, 377–385 (1938)CrossRefGoogle Scholar
  20. 20.
    Szemerédi, E.: Integer sets containing no arithmetic progressions. Acta Math. Sci. Hung. 56, 155–158 (1990)CrossRefMATHGoogle Scholar
  21. 21.
    Zuckermann, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: STOC: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 681–690, ACM, New York (2006)Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • N. Astromujoff
    • 1
  • M. Chapelle
    • 2
  • M. Matamala
    • 3
  • I. Todinca
    • 2
  • J. Zamora
    • 4
  1. 1.Departamento de MatemáticaUniversidad de ChileSantiagoChile
  2. 2.Laboratoire d’Informatique Fondamentale d’OrléansUniversité d’OrléansOrléansFrance
  3. 3.Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático (UMI 2807 CNRS)Universidad de ChileSantiagoChile
  4. 4.Departamento de MatemáticasUniversidad Andrés BelloSantiagoChile

Personalised recommendations