Graphs and Combinatorics

, Volume 31, Issue 1, pp 91–98

On Weak Chromatic Polynomials of Mixed Graphs

  • Matthias Beck
  • Daniel Blado
  • Joseph Crawford
  • Taïna Jean-Louis
  • Michael Young
Original Paper


A mixed graph is a graph with directed edges, called arcs, and undirected edges. A k-coloring of the vertices is proper if colors from {1, 2, . . . , k} are assigned to each vertex such that u and v have different colors if uv is an edge, and the color of u is less than or equal to (resp. strictly less than) the color of v if uv is an arc. The weak (resp. strong) chromatic polynomial of a mixed graph counts the number of proper k-colorings. Using order polynomials of partially ordered sets, we establish a reciprocity theorem for weak chromatic polynomials giving interpretations of evaluations at negative integers.


Weak chromatic polynomial Mixed graph Poset ω-Labeling Order polynomial Combinatorial reciprocity theorem 

Mathematics Subject Classification (2000)

Primary 05C15 Secondary 05A15 06A07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck M., Bogart T., Pham T.: Enumeration of Golomb rulers and acyclic orientations of mixed graphs. Electron. J. Comb. 19, P42 (2012)MathSciNetGoogle Scholar
  2. 2.
    Furmańczyk H., Kosowski A., Ries B.,  Zyliński P.: Mixed graph edge coloring. Discret. Math. 309(12), 4027–4036 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Hansen P., Kuplinsky J., de Werra D.: Mixed graph colorings. Math. Methods Oper. Res. 45(1), 145–160 (1997)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Kotek, T.; Makowsky, J.A.; Zilber, B.: On counting generalized colorings. In: Computer science logic. Lecture Notes in Computer Science, vol. 5213, pp. 339–353. Springer, Berlin (2008)Google Scholar
  5. 5.
    Sotskov, Y.N.; Tanaev, V.S.: Chromatic polynomial of a mixed graph. Vescī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 140(6):20–23 (1976)Google Scholar
  6. 6.
    Sotskov Y.N., Tanaev V.S., Werner F.: Scheduling problems and mixed graph colorings. Optimization 51(3), 597–624 (2002)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Stanley, R.P.: Ordered structures and partitions. In: American Mathematical Society, Providence, R.I. Memoirs of the American Mathematical Society, No. 119 (1972)Google Scholar
  8. 8.
    Stanley R.P.: Acyclic orientations of graphs. Discret. Math. 5, 171–178 (1973)CrossRefMATHGoogle Scholar
  9. 9.
    Stanley, R.P.: Enumerative combinatorics. volume 1, volume 49 of Cambridge studies in advanced mathematics. In: Cambridge University Press, 2nd edn. Cambridge (2012)Google Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Matthias Beck
    • 1
  • Daniel Blado
    • 2
  • Joseph Crawford
    • 3
  • Taïna Jean-Louis
    • 4
  • Michael Young
    • 5
  1. 1.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA
  2. 2.Department of Computing and Mathematical SciencesCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of MathematicsMorehouse CollegeAtlantaUSA
  4. 4.Department of MathematicsAmherst CollegeAmherstUSA
  5. 5.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations