Graphs and Combinatorics

, Volume 30, Issue 4, pp 909–932 | Cite as

Distinguishing-Transversal in Hypergraphs and Identifying Open Codes in Cubic Graphs

  • Michael A. Henning
  • Anders Yeo
Original Paper


The open neighborhood N(v) of a vertex v in a graph G is the set of vertices adjacent to v in G. A graph is twin-free (or open identifiable) if every two distinct vertices have distinct open neighborhoods. A separating open code in G is a set C of vertices such that \({N(u) \cap C \neq N(v) \cap C}\) for all distinct vertices u and v in G. An open dominating set, or total dominating set, in G is a set C of vertices such that \({N(u) \cap C \ne N(v) \cap C}\) for all vertices v in G. An identifying open code of G is a set C that is both a separating open code and an open dominating set. A graph has an identifying open code if and only if it is twin-free. If G is twin-free, we denote by \({\gamma^{\rm IOC}(G)}\) the minimum cardinality of an identifying open code in G. A hypergraph H is identifiable if every two edges in H are distinct. A distinguishing-transversal T in an identifiable hypergraph H is a subset T of vertices in H that has a nonempty intersection with every edge of H (that is, T is a transversal in H) such that T distinguishes the edges, that is, \({e \cap T \neq f \cap T}\) for every two distinct edges e and f in H. The distinguishing-transversal number \({\tau_D(H)}\) of H is the minimum size of a distinguishing-transversal in H. We show that if H is a 3-uniform identifiable hypergraph of order n and size m with maximum degree at most 3, then \({20\tau_D(H) \leq 12n + 3m}\) . Using this result, we then show that if G is a twin-free cubic graph on n vertices, then \({\gamma^{\rm IOC}(G) \leq 3n/4}\) . This bound is achieved, for example, by the hypercube.


Distinguishing transversals Hypergraphs Identifying opencodes Total domination 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chvátal V., McDiarmid C.: Small transversals in hypergraphs. Combinatorica 12, 19–26 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    De Bontridder K.M.J., Halldórsson B.V., Halldórsson M.M., Hurkens C.A.J, Lenstra J.K, Ravi R., Stougie L.: Approximation algorithms for the test cover problem. Math. Program. Ser. B 98, 477–491 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Foucaud F., Guerrini E., Kovšea M., Naserasra R., Parreaub A., Valicova P.: Extremal graphs for the identifying code problem. Europ. J. Combin. 32, 628–638 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Haynes, T.W., Hedetniemi, S.T., Slater P.J.: Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York 1998Google Scholar
  5. 5.
    Haynes T.W., Knisley D.J., Seier E., Zou Y.: A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC Bioinform. 7, 108 (2006)CrossRefGoogle Scholar
  6. 6.
    Henning M.A.: Recent results on total domination in graphs: A survey. Discret. Math. 309, 32–63 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Henning M.A., Yeo A.: Hypergraphs with large transversal number and with edge sizes at least three. J. Graph Theory 59, 326–348 (2008)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Henning M.A., Yeo A.: Identifying vertex covers in graphs. Electronic J. Combin. 19(4), #P32 (2012)MathSciNetGoogle Scholar
  9. 9.
    Honkala I., Karpovsky M.G., Litsyn S.: On the identification of vertices and edges using cycles. Lecture Note Comput. Sci. 2227, 308–314 (2001)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Honkala I., Karpovsky M.G., Litsyn S.: Cycles identifying vertices and edges in binary hypercubes and 2-dimensional tori. Discret. Appl. Math. 129, 409–419 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Honkala I., Laihonen T., Ranto S.: On strongly identifying codes. Discret. Math. 254, 191–205 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Karpovsky M.G., Chakrabarty K., Levitin L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inform. Theory 44, 599–611 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Lai F.C., Chang G.J.: An upper bound for the transversal numbers of 4-uniform hypergraphs. J. Combin. Theory Ser. B 50, 129–133 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Laifenfeld, M.. Trachtenberg, A., Cohen, R., Starobinski, D.: Joint monitoring and routing in wireless sensor networks using robust identifying codes. In: Proceedings of IEEE Broadnets , pp. 197–06, 2007Google Scholar
  15. 15.
  16. 16.
    Moncel, J.: Codes Identifants dans les graphes. PhD thesis, Université Joseph Fourier Grenoble I, France, 2005 - available online at
  17. 17.
    Moret M.M.E., Shapiro H.D.: On minimizing a set of tests. SIAM J. Sci. Stat. Comput. 6, 983–1003 (1985)CrossRefGoogle Scholar
  18. 18.
    Ray, S., Ungrangsi, R., De Pellegrini, F., Trachtenberg, A., Starobinski, D.: Robust location detection in emergency sensor networks. Proceedings of IEEE INFOCOM 2003, pp. 1044–1053, 2003Google Scholar
  19. 19.
    Seo S.J., Slater P.J.: Open neighborhood locating-dominating sets. Australas. J. Combin. 46, 109–120 (2010)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Seo S.J., Slater P.J.: Open neighborhood locating-dominating in trees. Discret. Appl. Math. 159, 484–489 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Thomassé S., Yeo A.: Total domination of graphs and small transversals of hypergraphs. Combinatorica 27, 473–487 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tuza Z.s.: Covering all cliques of a graph. Discret. Math. 86, 117–126 (1990)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations