Graphs and Combinatorics

, Volume 30, Issue 2, pp 303–314 | Cite as

On the Minimum Sum Coloring of P 4-Sparse Graphs

  • Flavia Bonomo
  • Mario Valencia-Pabon
Original Paper


In this paper, we study the minimum sum coloring (MSC) problem on P 4-sparse graphs. In the MSC problem, we aim to assign natural numbers to vertices of a graph such that adjacent vertices get different numbers, and the sum of the numbers assigned to the vertices is minimum. Based in the concept of maximal sequence associated with an optimal solution of the MSC problem of any graph, we show that there is a large sub-family of P 4-sparse graphs for which the MSC problem can be solved in polynomial time. Moreover, we give a parameterized algorithm and a 2-approximation algorithm for the MSC problem on general P 4-sparse graphs.


Graph coloring Minimum sum coloring P4-sparse graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Noy A., Bellare M., Halldórsson M.M., Shachnai H., Tamir T.: On chromatic sums and distributed resource allocation. Inf. Comput. 140(2), 183–202 (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bar-Noy A., Kortsarz G.: Minimum color sum of bipartite graphs. J. Algorithms 28(2), 339–365 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bonomo, F., Valencia-Pabon, M.: Minimum sum coloring of P 4-sparse graphs. In: Proceedings pf V Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS), Electronic Notes in Discrete Mathematics, vol. 35, pp. 293–298. Elsevier, Amsterdam (2009)Google Scholar
  4. 4.
    Feige U., Lovász L., Tetali P.: Approximating min sum set cover. Algorithmica 40(4), 219–234 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Giaro, K., Janczewski, R., Kubale, M., Malafiejski, M: A 27/26-approximation algorithm for the chromatic sum coloring of bipartite graphs. In: Proceedings of 5th International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX), Lecture Notes in Computer Science, vol. 2462, pp. 135–145. Springer, Berlin (2002)Google Scholar
  6. 6.
    Halldórsson M.M., Kortsarz G., Shachnai H.: Sum coloring interval and k-claw free graphs with application to scheduling dependent jobs. Algorithmica 37(3), 187–209 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hoà àng, C.T.: Perfect graphs. Thesis, School of Computer Science, McGill University (1985)Google Scholar
  8. 8.
    Jamison B., Olariu S.: P 4-reducible graphs—a class of uniquely tree-representable graphs. Discret. Math. 51, 35–39 (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Jamison B., Olariu S.: Recognizing P 4-sparse graphs in linear time. SIAM J. Comput. 21, 381–406 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Jamison B., Olariu S.: A tree representation for P 4-sparse graphs. Discret. Appl. Math. 35, 115–129 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Jansen, K.: Complexity results for the optimum cost chromatic partition problem.In: Proceedings of 24th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 1256, pp. 727–737. Springer, Berlin (1997)Google Scholar
  12. 12.
    Kubick, E.: The chromatic sum of a graph. Thesis, Western Michigan University (1989)Google Scholar
  13. 13.
    Kubicka, E., Schwenk, A.J. An introduction to chromatic sums. In: Proceedings of 17th ACM Annual Computer Science Conference, pp. 39–45 (1989)Google Scholar
  14. 14.
    Nicoloso S., Sarrafzadeh M., Song X.: On the sum coloring problem on interval graphs. Algorithmica 23(2), 109–126 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Salavatipour, M.: On sum coloring of graphs. Master’s thesis, Department of Computer Science, University of Toronto (2000)Google Scholar
  16. 16.
    Szkaliczki T.: Routing with minimum wire length in the dogleg-free Manhattan model is NP-complete. SIAM J. Comput. 29(1), 274–287 (1999)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.IMAS-CONICET, Departamento de ComputaciónFacultad de Ciencias  Exactas y Naturales, Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.LIPN, Université Paris-NordVilletaneuseFrance

Personalised recommendations