Graphs and Combinatorics

, Volume 29, Issue 4, pp 1051–1057 | Cite as

Sufficient Condition for the Existence of an Even [a, b]-Factor in Graph

Original Paper

Abstract

Let a, b, be two even integers. In this paper, we get a sufficient condition which involves the stability number, the minimum degree of the graph for the existence of an even [a, b]-factor.

Keywords

Even factor 2-Edge connected Minimum degree Stability number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyama J., Kano M.: Factors and factorizations of graphs, a survey. J. Graph Theory 9, 1–42 (1985)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Cai J., Liu G., Hou J.: The stability number and connected [k, k + 1]-factor in graphs. Appl. Math. Lett. 22(6), 927–931 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kano M.: An Ore-type sufficient condition for a graph to have a connected [2, k]-factor, (preprint)Google Scholar
  4. 4.
    Katerinis P., Tsikopoulos N.: Independence number, connectivity and f-factors. Utilitas Math 57, 81–95 (2000)MathSciNetMATHGoogle Scholar
  5. 5.
    Kouider M., Lonc Z.: Stability number and [a, b]-factors in graphs. J. Graph Theory 46(4), 254–264 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kouider M., Ouatiki S.: Stability number and even [2,b]-factors in graphs. AKCE J. Graphs Combin. 7(2), 151–169 (2010)MathSciNetMATHGoogle Scholar
  7. 7.
    Kouider M., Vestergaard P.D.: On even [2, b]-factors in graphs. Aust. J. Combin. 27, 139–147 (2003)MathSciNetMATHGoogle Scholar
  8. 8.
    Kouider M., Vestergaard P.D.: Even [a, b]-factors in graphs. Disc. Math. Graph Theory 24, 431–441 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kouider M., Vestergaard P.D.: Connected factors in graphs, a survey. Graphs Combin. 21, 1–26 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lovász L.: Subgraphs with prescribed valencies. J. Combin. Theory 9, 391–416 (1970)Google Scholar
  11. 11.
    Neumann-Lara V., Rivera-Campo E.: Spanning trees with bounded degrees. Combinatorica 11(1), 55–61 (1991)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Nishimura T.: Independence number, connectivity, and r-factors. J Graph Theory 13(1), 63–69 (1989)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Plummer M.D.: Graph factors and factorization, a survey. Discret. Math. 307(7–8), 791–821 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Tutte W.T.: Graph factors. Combinatorica 1, 70–97 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhou S.: Indepenpdence number connectivity and (a, b, k)-critical graphs. Discret. Math. 309(12), 4144–4148 (2009)MATHCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.LRI, Univ. Paris-Sud, UMR 8623Orsay CedexFrance
  2. 2.LAID3, Faculté de Mathématiques, U.S.T.H.BEl-AliaAlgeria

Personalised recommendations