Graphs and Combinatorics

, Volume 29, Issue 4, pp 843–856 | Cite as

Upper Bounds on the Paired Domination Subdivision Number of a Graph

  • Yoshimi Egawa
  • Michitaka Furuya
  • Masanori Takatou
Original Paper


A paired dominating set of a graph G with no isolated vertex is a dominating set S of vertices such that the subgraph induced by S in G has a perfect matching. The paired domination number of G, denoted by γ pr(G), is the minimum cardinality of a paired dominating set of G. The paired domination subdivision number \({{\rm sd}_{\gamma _{\rm pr}}(G)}\) is the minimum number of edges to be subdivided (each edge of G can be subdivided at most once) in order to increase the paired domination number. In this paper, we show that if G is a connected graph of order at least 4, then \({{\rm sd}_{\gamma _{\rm pr}}(G)\leq 2|V(G)|-5}\). We also characterize trees T such that \({{\rm sd}_{\gamma _{\rm pr}}(T) \geq |V(T)| /2}\).


Paired domination number Paired domination subdivision number Tree 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer (2010)Google Scholar
  2. 2.
    Favaron O., Karami H., Sheikholeslami S.M.: Paired-domination subdivision numbers of graphs. Graphs Combin. 25, 503–512 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Haynes T.W., Hedetniemi S.M., Hedetniemi S.T., Jacobs D.P., Knisely J., van der Merwe L.C.: Domination subdivision numbers. Discuss. Math. Graph Theory 21, 239–253 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Haynes T.W., Henning M.A., Hopkins L.S.: Total domination subdivision numbers of graphs. Discuss. Math. Graph Theory 24, 457–467 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Haynes T.W., Henning M.A., van der Merwe L.C.: Total domination subdivision numbers. J. Combin. Math. Combin. Comput. 44, 115–128 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Haynes T.W., Slater P.J.: Paired domination in graphs. Networks 32, 199–206 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Haynes T.W., Slater P.J.: Paired domination and paired-domatic number. Congr. Numer. 109, 65–72 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Velammal, S.: Studies in graph theory: covering, independence, domination and related topics. Ph.D. Thesis, Manonmaniam Sundaranar University, Tirunelveli (1997)Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Yoshimi Egawa
    • 1
  • Michitaka Furuya
    • 1
  • Masanori Takatou
    • 1
  1. 1.Department of Mathematical Information ScienceTokyo University of ScienceTokyoJapan

Personalised recommendations