Graphs and Combinatorics

, Volume 28, Issue 4, pp 575–583 | Cite as

Partitioning a Graph into Global Powerful k-Alliances

Original Paper

Abstract

A set S of vertices of a graph is a defensive k-alliance if every vertex \({v\in S}\) has at least k more neighbors in S than it has outside of S. Analogously, a set S is an offensive k-alliance if every vertex in the neighborhood of S has at least k more neighbors in S than it has outside of S. Also, a powerful k-alliance is a set S of vertices of the graph, which is both defensive k-alliance and offensive (k + 2)-alliance. A powerful k-alliance is called global if it is a dominating set. In this paper we show that for k ≥ 0, no graph is partitionable into global powerful k-alliances and, for k ≤ −1, we obtain upper bounds on the maximum number of sets belonging to a partition of a graph into global powerful k-alliances. In addition, we study the close relationships that exist between partitions of a Cartesian product graph, Γ1 × Γ2, into (global) powerful (k1 + k2)-alliances and partitions of Γi into (global) powerful ki-alliances, \({i\in \{1,2\}}\).

Keywords

Defensive k-alliances Offensive k-alliances Powerful k-alliances Cartesian product graphs 

Mathematics Subject Classification (2000)

05C69 05C70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bermudo S., Rodríguez-Velázquez J.A., Sigarreta J.M., Yero I.G.: On global offensive k-alliances in graphs. Appl. Math. Lett. 23, 1454–1458 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Brigham R.C., Dutton R., Haynes T.W., Hedetniemi S.T.: Powerful alliances in graphs. Discrete Math. 309(8), 2140–2147 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brigham R.C., Dutton R., Hedetniemi S.: A sharp lower bound on the powerful alliance number of C m × C n. Congr. Numer. 167, 57–63 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    Eroh, L., Gera, R.: Alliance partition number in graphs. Ars Combin. (2007, in press)Google Scholar
  5. 5.
    Eroh L., Gera R.: Global alliance partition in trees. J. Combin. Math. Combin. Comput. 66, 161–169 (2008)MathSciNetMATHGoogle Scholar
  6. 6.
    Favaron O., Fricke G., Goddard W., Hedetniemi S., Hedetniemi S.T., Kristiansen P., Laskar R.C., Skaggs R.D.: Offensive alliances in graphs. Discuss. Math. Graph Theory 24(2), 263–275 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fernau, H., Rodríguez-Velázquez, J.A., Sigarreta, J.M.: Global r-alliances and total domination. In: Cologne-Twente Workshop on Graphs and Combinatorial Optimization. Universitá degli Studi di Milano, Gargnano, Italy. Abstracts 98–101 (2008)Google Scholar
  8. 8.
    Fernau H., Rodríguez J.A., Sigarreta J.M.: Offensive k-alliances in graphs. Discrete Appl. Math. 157(1), 177–182 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fricke G.H., Lawson L.M., Haynes T.W., Hedetniemi S.M., Hedetniemi S.T.: A note on defensive alliances in graphs. Bull. Inst. Combin. Appl. 38, 37–41 (2003)MathSciNetMATHGoogle Scholar
  10. 10.
    Haynes T.W., Hedetniemi S.T., Henning M.A.: Global defensive alliances in graphs. Electron. J. Combin. 10, 139–146 (2003)MathSciNetGoogle Scholar
  11. 11.
    Haynes T.W., Lachniet J.A.: The alliance partition number of grid graphs. AKCE Int. J. Graphs Comb. 4(1), 51–59 (2007)MathSciNetMATHGoogle Scholar
  12. 12.
    Kristiansen P., Hedetniemi S.M., Hedetniemi S.T.: Alliances in graphs. J. Combin. Math. Combin. Comput. 48, 157–177 (2004)MathSciNetMATHGoogle Scholar
  13. 13.
    Rodríguez-Velázquez J.A., González-Yero I., Sigarreta J.M.: Defensive k-alliances in graphs. Appl. Math. Lett. 22, 96–100 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rodríguez J.A., Sigarreta J.M.: Global alliances in planar graphs. AKCE Int. J. Graphs Comb. 4(1), 83–98 (2007)MathSciNetMATHGoogle Scholar
  15. 15.
    Rodríguez J.A., Sigarreta J.M.: Global defensive k-alliances in graphs. Discrete Appl. Math. 157, 211–218 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Rodríguez J.A., Sigarreta J.M.: Offensive alliances in cubic graphs. Int. Math. Forum 1(36), 1773–1782 (2006)MathSciNetMATHGoogle Scholar
  17. 17.
    Rodríguez J.A., Sigarreta J.M.: Spectral study of alliances in graphs. Discuss. Math. Graph Theory 27(1), 143–157 (2007)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Shafique K.H., Dutton R.D.: A tight bound on the cardinalities of maximum alliance-free and minimun alliance-cover sets. J. Combin. Math. Combin. Comput. 56, 139–145 (2006)MathSciNetMATHGoogle Scholar
  19. 19.
    Shafique K.H., Dutton R.D.: Maximum alliance-free and minimum alliance-cover sets. Congr. Numer. 162, 139–146 (2003)MathSciNetMATHGoogle Scholar
  20. 20.
    Shafique K.H., Dutton R.D.: On satisfactory partitioning of graphs. Congr. Numer. 154, 183–194 (2002)MathSciNetMATHGoogle Scholar
  21. 21.
    Sigarreta J.M., Rodríguez J.A.: On the global offensive alliance number of a graph. Discrete Appl. Math. 157(2), 219–226 (2009)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Sigarreta J.M., Yero I.G., Bermudo S., Rodríguez-Velázquez J.A.: Partitioning a graph into offensive k-alliances. Discrete Appl. Math. 159, 224–231 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Yero I.G., Bermudo S., Rodríguez-Velázquez J.A., Sigarreta J.M.: Partitioning a graph into defensive k-alliances. Acta Math. Sin. (Engl. Ser.) 27(1), 73–82 (2011)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Yero, I.G., Rodríguez-Velázquez, J.A.: Boundary powerful k-alliances in graphs. Ars Combin. (2009, in press)Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Ismael G. Yero
    • 1
  • Juan A. Rodríguez-Velázquez
    • 1
  1. 1.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations