Graphs and Combinatorics

, Volume 27, Issue 3, pp 363–376 | Cite as

Continuous Blooming of Convex Polyhedra

  • Erik D. Demaine
  • Martin L. Demaine
  • Vi Hart
  • John Iacono
  • Stefan Langerman
  • Joseph O’Rourke
Proceedings Paper


We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.


Unfolding Folding Collision-free motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloupis G., Demaine E.D., Langerman S., Morin P., O’Rourke J., Streinu I., Toussaint G.: Edge-unfolding nested polyhedral bands. Comput. Geom. Theor. Appl. 39(1), 30–42 (2008)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Arkin E.M., Held M., Mitchell J.S.B., Skiena S.S.: Hamiltonian triangulations for fast rendering. Vis. Comput. 12(9), 429–444 (1996)Google Scholar
  3. 3.
    Aloupis, G.: Reconfigurations of Polygonal Structures. PhD thesis, McGill University (2005)Google Scholar
  4. 4.
    Aronov B., O’Rourke J.: Nonoverlap of the star unfolding. Discret. Comput. Geom. 8(3), 219–250 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bern M., Demaine E.D., Eppstein D., Kuo E., Mantler A., Snoeyink J.: Ununfoldable polyhedra with convex faces. Comput. Geom. Theor. Appl. 24(2), 51–62 (2003)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Biedl T., Lubiw A., Sun J.: When can a net fold to a polyhedron?. Comput. Geom. Theor. Appl. 31(3), 207–218 (2005)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Damian M., Flatland R., O’Rourke J.: Epsilon-unfolding orthogonal polyhedra. Graphs Comb. 23(Suppl), 179–194 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Demaine E.D., O’Rourke J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, New York (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Itoh, J., O’Rourke, J., Vîilcu, C.: Source unfoldings of convex polyhedra with respect to certain closed polygonal curves. In: Abstracts from the 25th European Workshop on Computational Geometry, Brussels, Belgium (March 2009)Google Scholar
  10. 10.
    Itoh J.-i., O’Rourke J., Vîlcu C.: Star unfolding convex polyhedra via quasigeodesic loops. Discret. Comput. Geom. 44, 35–54 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Miller, E., Pak, I.: Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings. Discret. Comput. Geom. 39(1–3):339–388 (March 2008, first manuscript in 2003)Google Scholar
  12. 12.
    O’Rourke, J.: An extension of Cauchy’s arm lemma with application to curve development. In: Akiyama, J., Kano, M., Urabe, M. (eds), Revised Papers from the Japan Conference on Discrete and Computational Geometry, volume 2098 of Lecture Notes in Computer Science, pp. 280–291, Tokyo, Japan (2000)Google Scholar
  13. 13.
    O’Rourke, J.: Unfolding orthogonal polyhedra. In: Goodman, J.E., Pach, J., Pollack, R. (eds), Surveys on Discrete and Computational Geometry: Twenty Years Later, pp. 231–255. American Mathematical Society (2008)Google Scholar
  14. 14.
    Pak, I., Pinchasi, R.: How to cut out a convex polyhedron (2009, manuscript)Google Scholar
  15. 15.
    Sharir M., Schorr A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15(1), 193–215 (1986)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Martin L. Demaine
    • 1
  • Vi Hart
    • 2
  • John Iacono
    • 3
  • Stefan Langerman
    • 4
  • Joseph O’Rourke
    • 5
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.
  3. 3.Department of Computer Science and EngineeringPolytechnic Institute of NYUBrooklynUSA
  4. 4.Maître de recherches du F.R.S.-FNRS, Départment d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium
  5. 5.Department of Computer ScienceSmith CollegeNorthamptonUSA

Personalised recommendations