Graphs and Combinatorics

, 27:341

Algorithmic Folding Complexity

• Jean Cardinal
• Erik D. Demaine
• Martin L. Demaine
• Shinji Imahori
• Tsuyoshi Ito
• Masashi Kiyomi
• Stefan Langerman
• Ryuhei Uehara
• Takeaki Uno
Proceedings Paper

Abstract

How do we most quickly fold a paper strip (modeled as a line) to obtain a desired mountain-valley pattern of equidistant creases (viewed as a binary string)? Define the folding complexity of a mountain-valley string as the minimum number of simple folds required to construct it. We first show that the folding complexity of a length-n uniform string (all mountains or all valleys), and hence of a length-n pleat (alternating mountain/valley), is O(lg2 n). We also show that a lower bound of the complexity of the problems is Ω(lg2 n/lg lg n). Next we show that almost all mountain-valley patterns require Ω(n/lg n) folds, which means that the uniform and pleat foldings are relatively easy problems. We also give a general algorithm for folding an arbitrary sequence of length n in O(n/lg n) folds, meeting the lower bound up to a constant factor.

Keywords

Algorithm design Origami

References

1. 1.
Allouche J.-P.: Sur la complexité des suites infinies. Bull. Belg. Math. Soc. 1, 133–143 (1994)
2. 2.
Arkin E.M., Bender M.A., Demaine E.D., Demaine M.L., Mitchell J.S.B., Sethia S., Skiena S.S.: When can you fold a map?. Comput. Geom. Theory Appl. 29(1), 23–46 (2004)
3. 3.
Cardinal, J., Demaine, E.D., Demaine, M.L., Imahori, S., Langerman, S., Uehara, R.: Algorithmic folding complexity. In: 20th international symposium on algorithms and computation (ISAAC 2009). Lecture Notes in Computer Science, vol. 5856, pp. 452–461. Springer, Berlin (2009). (Extended abstract was presented at 7th Japan Conference on Computational Geometry and Graphs (JCCGG 2009), 143–144, 2009.)Google Scholar
4. 4.
chosotec. The making of Mens et Manus (in origami), vol. 1 (2007). http://techtv.mit.edu/collections/chosetec/videos/361-the-making-of-mens-et-manus-in-origami-vol-1
5. 5.
Dekking, M.: Michel Mendès France, Alf van der Poorten. Folds! Math. Intell. 4, 130–138 (1982) (173–181, 190–195)Google Scholar
6. 6.
Demaine E.D., O’Rourke J.: Geometric folding algorithms. Cambridge University Press, Cambridge (2007)
7. 7.
Demaine, E.D., O’Rourke, J.: Open problems from CCCG 2008. In: Proceedings of 21st Canadian Conference on Computational Geometry (CCCG’09) (2009, to appear)Google Scholar
8. 8.
Gardner, M.: Mathematical games. Sci. Am. 216(3), 124–125 (1967) (216, 4 (April 1967), 118–120; 217, 1 (July 1967), 115)Google Scholar
9. 9.
Ito, T., Kiyomi, M., Imahori, S., Uehara, R.: Complexity of pleat folding. In: Proceedings of 25th Workshop on Computational Geometry (EuroCG’09), pp. 53–56 (2009)Google Scholar
10. 10.
Ziv J., Lempel A.: A universal algorithm for sequential data compression. IEEE Trans. Inform. Theory 23(3), 337–343 (1977)
11. 11.
Ziv J., Lempel A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inform. Theory 24(5), 530–536 (1978)
12. 12.
Mendès France M., van der Poorten A.J.: Arithmetic and analytic properties of paper folding sequences. Bull. Austr. Math. Soc. 24, 123–131 (1981)

Authors and Affiliations

• Jean Cardinal
• 1
• Erik D. Demaine
• 2
• Martin L. Demaine
• 2
• Shinji Imahori
• 3
• Tsuyoshi Ito
• 4
• Masashi Kiyomi
• 5
• Stefan Langerman
• 1
• Ryuhei Uehara
• 5
• Takeaki Uno
• 6
1. 1.Département d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium
2. 2.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
3. 3.Department of Computational Science and Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
4. 4.Institute for Quantum Computing and School of Computer ScienceUniversity of WaterlooWaterlooCanada
5. 5.School of Information ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan
6. 6.National Institute of InformaticsChiyoda-ku, TokyoJapan