Graphs and Combinatorics

, Volume 27, Issue 6, pp 785–797

# Maximum Hitting of a Set by Compressed Intersecting Families

Original Paper

## Abstract

For a family $${\mathcal{A}}$$ and a set Z, denote $${\{A \in \mathcal{A} \colon A \cap Z \neq \emptyset\}}$$ by $${\mathcal{A}(Z)}$$. For positive integers n and r, let $${\mathcal{S}_{n,r}}$$ be the trivial compressed intersecting family $${\{A \in \big(\begin{subarray}{c}[n]\\r \end{subarray}\big) \colon 1 \in A\}}$$, where $${[n] := \{1, \ldots, n\}}$$ and $${\big(\begin{subarray}{c}[n]\\r \end{subarray}\big) := \{A \subset [n] \colon |A| = r\}}$$. The following problem is considered: For rn/2, which sets $${Z \subseteq [n]}$$ have the property that $${|\mathcal{A}(Z)| \leq |\mathcal{S}_{n,r}(Z)|}$$ for any compressed intersecting family $${\mathcal{A}\subset \big(\begin{subarray}{c}[n]\\r \end{subarray}\big)}$$? (The answer for the case $${1 \in Z}$$ is given by the Erdős–Ko–Rado Theorem.) We give a complete answer for the case |Z| ≥ r and a partial answer for the much harder case |Z| < r. This paper is motivated by the observation that certain interesting results in extremal set theory can be proved by answering the question above for particular sets Z. Using our result for the special case when Z is the r-segment $${\{2, \ldots, r+1\}}$$, we obtain new short proofs of two well-known Hilton–Milner theorems. At the other extreme end, by establishing that $${|\mathcal{A}(Z)| \leq |\mathcal{S}_{n,r}(Z)|}$$ when Z is a final segment, we provide a new short proof of a Holroyd–Talbot extension of the Erdős-Ko-Rado Theorem.

## Keywords

Erdős–Ko–Rado Theorem Intersecting family Compressed family

05D05

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Daykin D.E.: Erdős-Ko-Rado from Kruskal-Katona. J. Combin. Theory Ser. A 17, 254–255 (1974)
2. 2.
Deza M., Frankl P.: The Erdős–Ko–Rado theorem—22 years later. SIAM J. Algebraic Discret. Methods 4, 419–431 (1983)
3. 3.
Erdős P., Ko C., Rado R.: Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 12, 313–320 (1961)
4. 4.
Erdős P., Rado R.: Intersection theorems for systems of sets. J. London Math. Soc. 35, 85–90 (1960)
5. 5.
Erdős P.L., Seress Á., Székely L.A.: Erdős-Ko-Rado and Hilton-Milner type theorems for intersecting chains in posets. Combinatorica 20, 27–45 (2000)
6. 6.
Frankl P.: On intersecting families of finite sets. J. Combin. Theory Ser. A 24, 146–161 (1978)
7. 7.
Frankl P.: The shifting technique in extremal set theory. In: Whitehead, C. (ed). Combinatorial Surveys, pp. 81–110. Cambridge University Press, London (1987)Google Scholar
8. 8.
Frankl P., Furedi Z.: Non-trivial intersecting families. J. Combin. Theory Ser. A 41, 150–153 (1986)
9. 9.
Frankl P., Tokushige N.: Some best possible inequalities concerning cross-intersecting families. J. Combin. Theory Ser. A 61, 87–97 (1992)
10. 10.
Hajnal A., Rothschild B.: A generalization of the Erdős–Ko–Rado theorem on finite set systems. J. Combin. Theory Ser. A 15, 359–362 (1973)
11. 11.
Hilton A.J.W., Milner E.C.: Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 18, 369–384 (1967)
12. 12.
Holroyd F.C., Talbot J.: Graphs with the Erdős-Ko-Rado property. Discret. Math. 293, 165–176 (2005)
13. 13.
Katona G.O.H.: A simple proof of the Erdős–Chao Ko–Rado theorem. J. Combin. Theory Ser. B 13, 183–184 (1972)
14. 14.
Katona, G.O.H.: A theorem of finite sets. In: Theory of Graphs, Proc. Colloq. Tihany, Akadémiai Kiadó, pp. 187–207. Academic Press, New York (1968)Google Scholar
15. 15.
Kruskal J.B.: The number of simplices in a complex. In: Bellman, R. (ed). Mathematical optimization techniques, pp. 251–278. University of California Press, Berkeley, California (1963)Google Scholar