Graphs and Combinatorics

, Volume 27, Issue 1, pp 73–85 | Cite as

Looseness of Plane Graphs

  • Július Czap
  • Stanislav Jendrol’
  • František Kardoš
  • Jozef Miškuf
Original Paper

Abstract

A face of a vertex coloured plane graph is called loose if the number of colours used on its vertices is at least three. The looseness of a plane graph G is the minimum k such that any surjective k-colouring involves a loose face. In this paper we prove that the looseness of a connected plane graph G equals the maximum number of vertex disjoint cycles in the dual graph G* increased by 2. We also show upper bounds on the looseness of graphs based on the number of vertices, the edge connectivity, and the girth of the dual graphs. These bounds improve the result of Negami for the looseness of plane triangulations. We also present infinite classes of graphs where the equalities are attained.

Keywords

Vertex colouring Loose colouring Looseness Plane graph Dual graph 

Mathematics Subject Classification (2000)

05C10 05C15 05C38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appel, K., Haken, W.: Every planar map is four colorable. Contemp. Math. 98 (1989)Google Scholar
  2. 2.
    Bondy J.A., Murty U.S.R.: Graph Theory. Springer, Berlin (2008)MATHCrossRefGoogle Scholar
  3. 3.
    Dvořák Z., Král’ D.: On planar mixed hypergraphs. Electron. J. Combin. 8(1), #R35 (2001)Google Scholar
  4. 4.
    Dvořák Z., Král’ D., Škrekovski R.: Non-rainbow colouring 3-, 4- and 5-connected plane graphs. J. Graph Theory 63, 129–145 (2010)MATHMathSciNetGoogle Scholar
  5. 5.
    Garey M.R., Johnson D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  6. 6.
    Jendrol’ S.: Rainbowness of cubic polyhedral graphs. Discrete Math. 306, 3321–3326 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jungič V., Král’ D., Škrekovski R.: Colouring of plane graphs with no rainbow faces. Combinatorica 26(2), 169–182 (2006)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Kobler D., Kündgen A.: Gaps in the chromatic spectrum of face-constrained plane graphs. Electron. J. Combin. 8(1), #N3 (2001)Google Scholar
  9. 9.
    Kündgen A., Mendelsohn E., Voloshin V.: Colouring planar mixed hypergraphs. Electron. J. Combin. 7, #R60 (2000)Google Scholar
  10. 10.
    Negami S.: Looseness ranges of triangulations on closed surfaces. Discrete Math. 303, 167–174 (2005)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Negami S., Midorikawa T.: Loosely-tightness of triangulations of closed surfaces. Sci. Rep. Yokohama Nat. Univ., Sect. I. Math. Phys. Chem. 43, 25–41 (1996)MathSciNetGoogle Scholar
  12. 12.
    Penaud J.G.: Une propriété de bicoloration des hypergraphes planaires. Cahiers Centre Études Rech. Opér 17, 345–349 (1975)MATHMathSciNetGoogle Scholar
  13. 13.
    Ramamurthi R., West D.B.: Maximum face-constrained colouring of plane graphs. Electron. Notes Discrete Math. 11, 542–549 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ramamurthi R., West D.B.: Maximum face-constrained colouring of plane graphs. Discrete Math. 274, 233–240 (2004)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Július Czap
    • 1
  • Stanislav Jendrol’
    • 1
  • František Kardoš
    • 1
  • Jozef Miškuf
    • 1
  1. 1.Institute of MathematicsP. J. Šafárik UniversityKošiceSlovakia

Personalised recommendations