Graphs and Combinatorics

, Volume 25, Issue 2, pp 181–196 | Cite as

Total Domination in Partitioned Graphs

  • Allan Frendrup
  • Preben Dahl Vestergaard
  • Anders Yeo


We present results on total domination in a partitioned graph G = (V, E). Let γ t (G) denote the total dominating number of G. For a partition \(V_1, V_2, \ldots , V_k\), k ≥ 2, of V, let γ t (G; V i ) be the cardinality of a smallest subset of V such that every vertex of V i has a neighbour in it and define the following
$$\begin{array}{l} f_t(G; V_1, V_2, \ldots , V_k) = \gamma_t(G) + \gamma_t(G; V_1) + \gamma_t(G; V_2) +\cdots +\gamma_{t}(G;V_k) \\ f_t(G; k) = \max \{ f_{t}(G; V_1, V_2,\ldots , V_k) \mid V_1, V_2, \ldots , V_k {\rm is a partition of } V\} \\ g_t(G; k) = \max\{ \Sigma _{i=1}^{k}\gamma_t(G; V_i) \mid V_1, V_2, \ldots, V_k {\rm is a partition of } V \} \end{array} $$
We summarize known bounds on γ t (G) and for graphs with all degrees at least δ we derive the following bounds for f t (G; k) and g t (G; k).
  1. (i)

    For δ ≥ 2 and k ≥ 3 we prove f t (G; k) ≤ 11|V|/7 and this inequality is best possible.

  2. (ii)

    for δ ≥ 3 we prove that f t (G; 2) ≤ (5/4 − 1/372)|V|. That inequality may not be best possible, but we conjecture that f t (G; 2) ≤ 7|V|/6 is.

  3. (iii)

    for δ ≥ 3 we prove f t (G; k) ≤  3|V|/2 and this inequality is best possible.

  4. (iv)

    for δ ≥ 3 the inequality g t (G; k) ≤ 3|V|/4 holds and is best possible.



Total domination Partitions and Hypergraphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chartrand, G., Lesniak, L.: Graphs and Digraphs: Third Edition. Chapman & Hall, London (1996)Google Scholar
  2. 2.
    Chvátal, V., McDiarmid, C.: Small transversals in hypergraphs. Combinatorica 12, 19–26 (1992)Google Scholar
  3. 3.
    Favaron, O., Henning, M.A., Mynhardt, C.M., Puech, J.: Total domination in graphs with minimum degree three. J. Graph Theory 34(1), 9–19 (2000)Google Scholar
  4. 4.
    Frendrup, A., Henning, M.A., Vestergaard, P.D.: Total domination in partitioned trees and partitioned graphs with minimum degree two. J. of Global Optim. 41, 385–399 (2008)Google Scholar
  5. 5.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)Google Scholar
  6. 6.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998)Google Scholar
  7. 7.
    Hartnell, B.L., Vestergaard, P.D.: Partitions and dominations in a graph. J. Combin. Math. Combin. Comput. 46, 113–128 (2003)Google Scholar
  8. 8.
    Henning, M.A.: Graphs with large total domination number. J. Graph Theory 35(1), 21–45 (2000)Google Scholar
  9. 9.
    Henning, M.A.: A survey of selected recent results on total domination in graphs. Discrete Math. 309, 32–63 (2009)Google Scholar
  10. 10.
    Henning, Michael A.; Kang, Liying; Shan, Erfang; Yeo, Anders On matching and total domination in graphs. Discrete Math. 308 (11), 2313–2318 (2008)Google Scholar
  11. 11.
    Henning, M.A., Vestergaard, P.D.: “Domination in partitioned graphs with minimum degree two”’. Discrete Math. 307, 1115–1135 (2007)Google Scholar
  12. 12.
    Henning, M.A., Yeo, A.: Hypergraphs with large transversal number and with edge sizes at least three, pp. 1–22. Journal of Graph Theory 59, 326–348 (2008)Google Scholar
  13. 13.
    Henning, M.A., Yeo, A.: Tight lower bounds on the size of a matching in a regular graph. Graphs Combin. 23(6), 647–657 (2007)Google Scholar
  14. 14.
    Seager, S.M.: Partition dominations of graphs of minimum degree2. Congr. Numer. 132, 85–91 (1998)Google Scholar
  15. 15.
    Thomassé, S., Yeo, A.: Total domination of graphs and small transversals of hypergraphs. Combinatorica 27(4), 473–487 (2007)Google Scholar
  16. 16.
    Tuza, Z.: Covering all cliques of a graph. Discrete Math. 86, 117–126 (1990)Google Scholar
  17. 17.
    Tuza, Z., Vestergaard, P.D.: Domination in partitioned graph. Discuss. Math. Graph Theory 22(1), 199–210 (2002)Google Scholar
  18. 18.
    Yeo, A.: Relationships between total domination, order, size and maximum degree of graphs, pp. 1–12. J. Graph Theory 55 (4), 325–337 (2007)Google Scholar
  19. 19.
    Yeo, A.: Excluding one graph significantly improves bounds on total domination in connected graphs of minimum degree four. In preperationGoogle Scholar

Copyright information

© Springer Japan 2009

Authors and Affiliations

  • Allan Frendrup
    • 1
  • Preben Dahl Vestergaard
    • 1
  • Anders Yeo
    • 2
  1. 1.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  2. 2.Department of Computer ScienceUniversity of LondonSurreyUK

Personalised recommendations