Graphs and Combinatorics

, Volume 23, Issue 5, pp 481–507 | Cite as

Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles

  • O. Aichholzer
  • C. Huemer
  • S. Kappes
  • B. Speckmann
  • Cs. D. Tóth


We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their complexity. Our upper bounds depend on new Ramsey-type results concerning disjoint empty convex k-gons in point sets.


Partitions decompositions planar point sets Ramsey-type results 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, P.K., Basch, J., Guibas, L.J., Hershberger, J., Zhang, L.: Deformable free space tilings for kinetic collision detection. Int. J. Robot. Res. 21, 179–197 (2002)Google Scholar
  2. Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small point sets with applications. Order 19, 265–281 (2002)Google Scholar
  3. Aichholzer, O., Krasser, H.: Abstract order type extensions and new results on the rectilinear crossing number, in: Proc. 21st Sympos. Comput. Geom. pp. 91–98, ACM Press (2005)Google Scholar
  4. Arkin, E.M., Fekete, S.P., Hurtado, F., Mitchell, J.S.B., Noy, M., Sacristán, V., Sethia, S.: On the reflexivity of point sets, in: Discrete and Computational Geometry: The Goodman-Pollack Festschrift (B. Aronov et al., eds.), vol. 25 of Algorithms Combin., pp. 139–156, Springer, Berlin (2003)Google Scholar
  5. Chazelle, B., Dobkin, D.: Optimal convex decompositions, in: Computational Geometry, (G.T. Toussaint, ed.), pp. 63–133, North-Holland, Amsterdam (1985)Google Scholar
  6. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12, 54–68 (1994)Google Scholar
  7. de Berg, M., Matoušek, J., Schwarzkopf, O.: Piecewise linear paths among convex obstacles. Discrete Comput. Geom. 14(1), 9–29 (1995)Google Scholar
  8. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Comp. Math. 2, 463–470 (1935)Google Scholar
  9. Erdős, P., Szekeres, G.: On some extremum problem in geometry. Ann. Univ. Sci. Budapest, 3–4:53–62 (1960)Google Scholar
  10. Fevens, T., Meijer, H., Rappaport, D.: Minimum convex partition of a constrained point set. Discrete Appl. Math. 109, 95–107 (2001)Google Scholar
  11. García-López, J., Nicolás, M.: Planar point sets with large minimum convex partitions, in: Abstracts 22nd European Workshop on Comput. Geom., pp. 51–54, Delphi (2006)Google Scholar
  12. Gerdjikov, S., Wolff, A.: Pseudo-convex decomposition of simple polygons, in: Abstracts 22nd European Workshop on Computational Geometry, pp. 13–16, Delphi (2006)Google Scholar
  13. Gerken, T.: On empty convex hexagons in planar point sets, 2005, submittedGoogle Scholar
  14. Goodman, J., Pollack, R.: Allowable sequences and order types in discrete and computational geometry, in: New Trends in Discrete and Computational Geometry, pp. 103–134, Springer, New York (1993)Google Scholar
  15. Goodrich, M., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivision via balanced geodesic triangulations. J. Algorithms 23, 51–73 (1997)Google Scholar
  16. Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H., Souvaine, D., Streinu, I., Whiteley, W.: Planar minimally rigid graphs and pseudo-triangulations, Comput. Geom. Theory Appl. 31(1-2), 31–61 (2005)Google Scholar
  17. Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen, Elemente Math. 33(5), 116–118 (1978)Google Scholar
  18. Hosono, K., Urabe, M.: On the number of disjoint convex quadrilaterals for a planar point set. Comput. Geom. Theory Appl. 20, 97–104 (2001)Google Scholar
  19. Károlyi, Gy., Pach, J., Tóth, G.: Ramsey-type results for geometric graphs I. Discrete Comput. Geom. 18, 247–255 (1997)Google Scholar
  20. Károlyi, Gy., Pach, J., Tóth, G., Valtr, P.: Ramsey-type results for geometric graphs II. Discrete Comput. Geom. 20, 375–388 (1998)Google Scholar
  21. Keil, J.M.: Decomposing a polygon into simpler components, SIAM J. Comput. 14, 799–817 (1985)Google Scholar
  22. Keil, J.M., Snoeyink, J.: On the time bound for convex decomposition of simple polygons. Int. J. Comput. Geom. Appl. 12, 181–192 (2002)Google Scholar
  23. Kirkpatrick, D., Speckmann, B.: Kinetic maintenance of context-sensitive hierarchical representations for disjoint simple polygons, In: Proc. 18th Sympos. Comput. Geom., pp. 179–188, ACM Press (2002)Google Scholar
  24. Larman, D., Matoušek, J., Pach, J., Törőcsik, J.: A Ramsey-type result for planar convex sets, Bull. Lond. Math. Soc. 26, 132–136 (1994)Google Scholar
  25. Lien, J.-M., Amato, N.M.: Approximate convex decomposition, In: Proc. 20th Sympos. Comput. Geom., pp. 17–26, ACM Press (2004)Google Scholar
  26. Neumann-Lara, V., Rivera-Campo, E., Urrutia, J.: A note on convex decompositions of a set of points in the plane, Graphs Combin. 20(2), 223–231 (2004)Google Scholar
  27. O’Rourke, J.: Visibility, in: Handbook of Discrete and Computational Geometry, (2nd edn.), pp. 643–664, CRC Press, Boca Raton, FL (1997)Google Scholar
  28. Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudo- triangulations. Discrete Comput. Geom. 16, 419–453 (1996)Google Scholar
  29. Pocchiola, M., Vegter, G.: Minimal tangent visibility graphs. Comput. Geom. Theory Appl. 6, 303–314 (1996)Google Scholar
  30. Ramaswami, S., Ramos, P.A., Toussaint, G.T.: Converting triangulations to quadrangulations. Comput. Geom. Theory Appl. 9, 257–276 (1998)Google Scholar
  31. Spillner, A.: Optimal convex partitions of point sets with few inner points, In: Proc. 17th Canadian Conf. Comput. Geom., pp. 39–42, Windsor, ON (2005)Google Scholar
  32. Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion planning, in: Proc. 41st Sympos. Foundations Comp. Sci., pp. 443–453, IEEE Press (2000)Google Scholar
  33. Urabe, M.: On a partition into convex polygons. Discrete Appl. Math. 64, 179–191 (1996)Google Scholar
  34. Valtr, P.: On empty hexagons, 2006, submittedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  • O. Aichholzer
    • 1
  • C. Huemer
    • 2
  • S. Kappes
    • 3
  • B. Speckmann
    • 4
  • Cs. D. Tóth
    • 5
  1. 1.Institute for Software TechnologyGraz University of TechnologyAustria
  2. 2.Departament de Matemática Aplicada IIUniv. Poli. de CatalunyaSpain
  3. 3.Department of Mathematics TU BerlinGermany
  4. 4.Department of Mathematics and Computer Science TU EindhovenNetherland
  5. 5.Department of MathematicsMITCambridegeUSA

Personalised recommendations