Advertisement

Graphs and Combinatorics

, Volume 23, Supplement 1, pp 41–65 | Cite as

Vašek Chvátal: A Very Short Introduction

  • David Avis
  • Adrian Bondy
  • William Cook
  • Bruce Reed
Article

Abstract

This is the story of a man named Vašek.

Keywords

Vašek Chvátal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K.: 7397-city traveling salesman instance solved—another layer of icing on the cake. Optima 45, 7–8 (1995)Google Scholar
  2. Aardal, K.: TSP Cake. Optima 61, 20–21 (1999)Google Scholar
  3. Althaus, E., Polzin, T., Daneshmand, S. V.: Improving linear programming approaches for the Steiner tree problem. Lect. Notes Comput. Sci. 2647, 1–14 (2003)Google Scholar
  4. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (a preliminary report). DIMACS Technical Report 95-05. DIMACS, Rutgers University, New Brunswick, NJ, USA, 1995Google Scholar
  5. Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)Google Scholar
  6. Avis, D., Chvátal, V.: Notes on Bland’s pivoting rule. Math. Program. Study 8, 24–34 (1978)Google Scholar
  7. Bauer, D., Broersma, H. J., Veldman, H. J.: Not every 2-tough graph is Hamiltonian. Discrete Appl. Math. 99, 1–3 (2000)Google Scholar
  8. Berge, C.: Some classes of perfect graphs. In: Six papers on Graph Theory, pp. 1–21. Indian Stastical Institute, Calcutta (1963)Google Scholar
  9. Booth, K.S., Lueker, G. S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)Google Scholar
  10. Bondy, J. A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)Google Scholar
  11. Caprara, A., Fischetti, M.: \(\{0,\frac{1}{2}\}\) -Chvátal–Gomory cuts. Math. Program. 74, 221–235 (1996)Google Scholar
  12. Caprara, A., Fischetti, M., Letchford, A. N.: On the separation of maximally violated mod-k cuts. Math. Program. 87, 37–56 (2000)Google Scholar
  13. Chvátal, V.: On finite and countable rigid graphs and tournaments. Comment. Math. Univ. Carol. 6, 429–438 (1965)Google Scholar
  14. Chvátal, V.: The smallest triangle-free 4-chromatic 4-regular graph. J. Comb. Theory 9, 93–94 (1970)Google Scholar
  15. Chvátal, V.: Hypergraphs and Ramseyian theorems. Proc. Am. Math. Soc. 27, 434–440 (1971)Google Scholar
  16. Chvátal, V.: On Hamilton’s ideals. J. Comb. Theory B 12, 163–168 (1972)Google Scholar
  17. Chvátal, V.: Monochromatic paths in edge-colored graphs. J. Comb. Theory B 13, 69–70 (1972)Google Scholar
  18. Chvátal, V.: Edmonds polytopes and weakly Hamiltonian graphs. Math. Program. 5, 29–40 (1973)Google Scholar
  19. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4, 305–337 (1973)Google Scholar
  20. Chvátal, V.: Flip-flops in hypoHamiltonian graphs. Can. Math. Bull. 16, 33–41 (1973)Google Scholar
  21. Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5, 215–218 (1973)Google Scholar
  22. Chvátal V.: Intersecting families of edges in hypergraphs having the hereditary property. Hypergraph Seminar Proceedings of the First Working Seminar, Ohio State University, Columbus, Ohio. Lect. Notes Math. 411, 61–68 (1974)Google Scholar
  23. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory B 18, 138–154 (1975)Google Scholar
  24. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory B 18, 39–41 (1975)Google Scholar
  25. Chvátal, V.: Some linear programming aspects of combinatorics. Congr. Numer. 13, 2–30 (1975)Google Scholar
  26. Chvátal, V.: Determining the stability number of a graph. SIAM J. Comput. 6, 643–662 (1977)Google Scholar
  27. Chvátal V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979)Google Scholar
  28. Chvátal V.: Hard knapsack problems. Oper. Res. 28, 1402–1411 (1980)Google Scholar
  29. Chvátal V.: Linear Programming. W.H. Freeman, New York (1983)Google Scholar
  30. Chvátal, V.: Cutting-plane proofs and the stability number of a graph. Report 84326, University of Bonn, pp. 10 (1984)Google Scholar
  31. Chvátal, V.: Notes on perfect graphs. In: Pulleyblank WR (ed.) Progress in Combinatorial Optimization, pp. 107–115. Academic, New York (1984)Google Scholar
  32. Chvátal, V.: In praise of Claude Berge. Discrete Math. 165/166, 3–9 (1997)Google Scholar
  33. Chvátal, V.: Star-cutsets and perfect graphs. J. Comb. Theory B 39, 189–199 (1985)Google Scholar
  34. Chvátal, V.: Claude Berge 5.6.1926-30.6.2002. Graphs Comb. 19, 1–6 (2003)Google Scholar
  35. Chvátal, V., Cook, W.: The discipline number of a graph. Discrete Math. 86, 191–198 (1990)Google Scholar
  36. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114/115, 455–499 (1989)Google Scholar
  37. Chvátal, V., Erdős P.: A note on Hamiltonian circuits. Discrete Math. 2, 111–113 (1972)Google Scholar
  38. Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. I. Diagonal numbers. Periodica Mathematica Hungarica. J. János Bolyai Math. Soc. 3, 115–124 (1973)Google Scholar
  39. Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. II. Small diagonal numbers. Proc. Am. Math. Soc. 32, 389–394 (1972)Google Scholar
  40. Chvátal, V., Harary, F.: Generalized Ramsey theory for graphs. III. Small off-diagonal numbers. Pacific J. Math. 41, 335–345 (1972)Google Scholar
  41. Chvátal, V., Klarner, D. A., Knuth, D. E.: Selected Combinatorial Research Problems. Computer Science Department, Stanford University, CS-TR-72-292, 1972Google Scholar
  42. Chvátal, V., Lovász, L.: Every directed graph has a semi-kernel. Hypergraph Seminar Proceedings of the First Working Seminar, Ohio State University, Columbus, Ohio. Lect. Notes Math. 411, 175 (1974)Google Scholar
  43. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627. IEEE Computer Society Press, Washington (1992)Google Scholar
  44. Chvátal, V., Sbihi, N.: Bull-free Berge graphs are perfect. Graphs Combin. 3, 127–139 (1987)Google Scholar
  45. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. Assoc. Comput. Mach. 35, 759–768 (1988)Google Scholar
  46. Cook, S. A.: The complexity of theorem-proving procedures. 3rd ACM Symposium on Theory of Computing, pp. 151–158, 1970Google Scholar
  47. Crowder, H., Padberg, M. W.: Solving large-scale symmetric travelling salesman problems to optimality. Manage. Sci. 26, 495–509 (1980)Google Scholar
  48. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954)Google Scholar
  49. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)Google Scholar
  50. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stand. 69B, 125–130 (1965)Google Scholar
  51. Espinoza, D. G.: On Linear programming, Integer Programming and Cutting Planes. Ph.D. Thesis. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA, 2006Google Scholar
  52. Fleischer, L., Tardos, É.: Separating maximally violated comb inequalities in planar graphs. Math. Oper. Res. 24, 130–148 (1999)Google Scholar
  53. Gomory, R. E.: An algorithm for integer solutions to linear programs. Princeton IBM Math Report, 1958Google Scholar
  54. Gomory, R. E.: The traveling salesman problem. In: Proceedings of the IBM Scientific Computing Symposium on Combinatorial Problems, pp. 93–121. IBM, White Plains (1966)Google Scholar
  55. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-city problem. Math. Program. Study 12, 61–77 (1980)Google Scholar
  56. Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program. 51, 141–202 (1991)Google Scholar
  57. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 189–197 (1981)Google Scholar
  58. Grötschel, M., Padberg, M. W.: On the symmetric traveling salesman problem. I: Inequalities. Math. Program. 16, 265–280 (1979)Google Scholar
  59. Hayward, R.: Weakly triangulated graphs. J. Comb. Theory B 39, 200–208 (1985)Google Scholar
  60. Hayward, R.: The story of perfectly orderable graphs. Graphs Comb. (this volume)Google Scholar
  61. Hoàng, C.: Some properties of minimal imperfect graphs. Discrete Math. 160, 165–175 (1996)Google Scholar
  62. Hong, S.: A Linear Programming Approach for the Traveling Salesman Problem. Ph.D. Thesis. The Johns Hopkins University, Baltimore, MD, USA, 1972Google Scholar
  63. Karp, R. M.: Reducibility among combinatorial problems. In: Miller, R. E., et al. (eds.) Complexity of Computer Computations. (1972)Google Scholar
  64. Khachian, L. G.: A polynomial time algorithm in linear programming. Doklady Akademiiia Nauk SSSR 244, 1093–1096 (1980)Google Scholar
  65. Letchford, A. N.: Separating a superclass of comb inequalities in planar graphs. Math. Oper. Res. 25, 443–454 (2000)Google Scholar
  66. Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267 (1972)Google Scholar
  67. Lovász, L.: A characterization of perfect graphs. J. Comb. Theory B 13, 95–98 (1972)Google Scholar
  68. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)Google Scholar
  69. Reed, B.: Skew partitions in perfect graphs. Discrete Appl. Math. (in press)Google Scholar
  70. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)Google Scholar
  71. Reinelt, G., Wenger, K. M.: Maximally violated mod-p cuts for the capacitated vehicle-routing problem. INFORMS J. Comput. 18, 466–479 (2006)Google Scholar
  72. Padberg, M.: Plenary Lecture, XVI International Symposium on Mathematical Programming, Lausanne, August (1997)Google Scholar
  73. Shannon, C. E.: The zero error capacity of a noisy channel. Institute of Radio Engineers. Trans. Inf. Theory IT-2, 8–19 (1956)Google Scholar
  74. Tucker, A.: A structure theorem for the consecutive 1’s property. J. Comb. Theory B 12, 153–162 (1972)Google Scholar
  75. Underground, P.: Graphs with Hamiltonian squares. Discrete Math. 21, 323 (1978)Google Scholar
  76. Yamamoto, Y., Kubo, M.: Invitation to the Traveling Salesman Problem. Asakura, Tokyo, 1997 (in Japanese)Google Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  • David Avis
    • 1
  • Adrian Bondy
    • 2
  • William Cook
    • 3
  • Bruce Reed
    • 1
    • 4
  1. 1.Computer Science, McGill UniversityMontrealCanada
  2. 2.Université Claude-Bernard Lyon 1, Domaine de GerlandLyon Cedex 07France
  3. 3.Industrial and Systems EngineeringGeorgia TechAtlantaUSA
  4. 4.Project Mascotte, INRIA +CNRS (Lab I3S)Sophia AntipolisFrance

Personalised recommendations