Graphs and Combinatorics

, Volume 23, Supplement 1, pp 259–267

A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry

  • Hiroshi Fukuda
  • Nobuaki Mutoh
  • Gisaku Nakamura
  • Doris Schattschneider
Article

Abstract

We show a simple method to generate polyominoes and polyiamonds that produce isohedral tilings with p3, p4 or p6 rotational symmetry by using n line segments between lattice points on a regular hexagonal, square and triangular lattice, respectively. We exhibit all possible tiles generated by this algorithm up to n  =  9 for p3, n = 8 for p4, and n = 13 for p6. In particular, we determine for n ≤ 8 all n-ominoes that are fundamental domains for p4 isohedral tilings.

Keywords

Polyominoes Polyiamonds Isohedral tilings Rotational symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coxeter, H. S. M., Moser, W. O. J.: Generators and relations for discrete groups. Springer, New York (1965)Google Scholar
  2. Fukuda, H., Betumiya, T., Nishiyama, S., Nakamura, G.: Two topics on plane tiling. Katachi ∪ Symmetry. Springer, Tokyo, 231–238 (1996)Google Scholar
  3. Golomb, S.: Polyominoes: puzzles, patterns, problems, and packings. revised edn. Princeton University Press, New Jersey (1994)Google Scholar
  4. Grünbaum, B., Shephard, G. C.: Tilings and patterns, W.H. Freeman, New York (1987)Google Scholar
  5. Heesch, H., Kienzle, O.: Flächenschluss. System der Formen lückenlos aneinanderschliessender Flachteile. Springer, Heidelberg (1963)Google Scholar
  6. Martin, G. E.: Polyominoes: a guide to puzzles and problems in tiling. Mathematical Association of America, Washington, D.C. (1991)Google Scholar
  7. Roelofs, R.: Not the tiles, but the joints: a little bridge between M.C. Escher and Leonardo da Vinci. In: M.C. Escher’s Legacy. a centennial celebration. Schattschneider, D., Emmer, M. (eds.) Springer, Heidelberg, pp. 252–264 (2003)Google Scholar
  8. Schattschneider, D.: The plane symmetry groups their recognition and notation. American mathematical monthly 85, 439–450 (1978)Google Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  • Hiroshi Fukuda
    • 1
  • Nobuaki Mutoh
    • 1
  • Gisaku Nakamura
    • 2
  • Doris Schattschneider
    • 3
  1. 1.School of Administration and InformaticsUniversity of ShizuokaShizuokaJapan
  2. 2.Research Institute of EducationTokai UniversityTokioJapan
  3. 3.Mathematics DepartmentPPHAC Moravian CollegeBethlehemUSA

Personalised recommendations