Graphs and Combinatorics

, Volume 23, Supplement 1, pp 117–134 | Cite as

Enumerating Non-crossing Minimally Rigid Frameworks

  • David Avis
  • Naoki Katoh
  • Makoto Ohsaki
  • Ileana Streinu
  • Shin-ichi Tanigawa
Article

Abstract

In this paper, we present an algorithm for enumerating without repetitions all the non-crossing generically minimally rigid bar-and-joint frameworks (simply called non-crossing Laman frameworks) on a given generic set of n points. Our algorithm is based on the reverse search paradigm of Avis and Fukuda. It generates each output graph in O(n4) time and O(n) space, or, with a slightly different implementation, in O(n3) time and O(n2) space. In particular, we obtain that the set of all non-crossing Laman frameworks on a given point set is connected by flips which remove an edge and then restore the Laman property with the addition of a non-crossing edge.

Keywords

Geometric enumeration Rigidity Non-crossing minimally rigid frameworks Minimally rigid graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholzer, O., Rote, G., Speckmann, B., Streinu, I.: The zig-zag path of a pseudo-triangulation. In: Proceedings of the 8th International Workshop on Algorithms and Data Structures (WADS), LNCS vol. 2748, pp. 377–388, Ottawa, Canada Springer, Berlin (2003)Google Scholar
  2. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8, 295–313 (1992)Google Scholar
  3. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)Google Scholar
  4. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)Google Scholar
  5. Berg,A., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Battista, G.D., Zwick, U. (eds.) In: Proceedings of the 11th Annual European Symposium on Algorithms (ESA), Lecture Notes in Computer Science, vol. 2832, pp. 78–89. Springer, Berlin (2003)Google Scholar
  6. Bespamyatnikh, S.: An efficient algorithm for enumeration of triangulations. Comput. Geom. Theory Appl. 23(3), 271–279 (2002)Google Scholar
  7. Bereg, S.: Enumerating pseudo-triangulations in the plane. Comput. Geom. Theory Appl. 30(3), 207–222 (2005)Google Scholar
  8. Brönnimann, H., Kettner, L., Pocchiola, M., Snoeyink, J.: Enumerating and counting pseudo-triangulations with the greedy flip algorithm. In: Proceedings of the ALENEX, Vancouver, Canada, 2005Google Scholar
  9. Diestel, R.: Graph Theory, 2nd edn. Springer, Berlin (2000)Google Scholar
  10. Dumitrescu, A., Gärtner, B., Pedroni, S., Welzl, E.: Enumerating triangulation paths. Comput. Geom. Theory Appl. 20(1–2), 3–12 (2001). A preliminary version in Proceedings of the Twelfth Canadian Conference on Computational Geometry, (CCCG’00), pp. 233–238 (2000)Google Scholar
  11. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics, vol. 2. American Mathematical Society, Providence, RI (1993)Google Scholar
  12. Jacobs, D.J., Hendrickson, B.: An algorithm for two-dimensional rigidity percolation: the pebble game. J. Comput. Phys. 137, 346–365 (1997)Google Scholar
  13. Kaveh, A.: Structural Mechanics: Graph and Matrix Methods, 3rd edn. Research Studies Press, Somerset (2004)Google Scholar
  14. Kawamoto, A., Bendsøe, M., Sigmund, O.: Planar articulated mechanism design by graph theoretical enumeration. Struct Multidisc Optim 27, 295–299 (2004)Google Scholar
  15. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)Google Scholar
  16. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. In: Proceedings of the EUROCOMB, Berlin, September 2005Google Scholar
  17. Lee, A., Streinu, I., Theran, L.: Finding and maintaining rigid components. In: Proceedings of the Canadian Conference on Computational Geometry, Windsor, Canada, August 2005Google Scholar
  18. Ohsaki, M., Nishiwaki, S.: Shape design of pin-jointed multi-stable compliant mechanisms using snapthrough behavior. Struct. Multidisc. Optim. 30, 327–334 (2005)Google Scholar
  19. Rote, G., Santos, F., Streinu, I.: Expansive motions and the polytope of pointed pseudo-triangulations. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.), Discrete and Computational Geometry—The Goodman–Pollack Festschrift, Algorithms and Combinatorics, pp. 699–736. Springer, Berlin (2003)Google Scholar
  20. Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion planning. In: IEEE Symposium on Foundations of Computer Science, pp. 443–453 (2000)Google Scholar
  21. Streinu, I.: Pseudo-triangulations, rigidity and motion planning. Discrete Comput. Geom. 34, 587–635 (2005) A preliminary version appeared in [20]Google Scholar
  22. Tay, T.S., Whiteley, W.: Generating isostatic frameworks. Struct. Topol. 11, 21–69 (1985)Google Scholar
  23. Whiteley, W.: Some matroids from discrete applied geometry In: Matroid Theory, Bonin, J., Oxley, J., Servatius, B. (eds.) Contemporary Mathematics, vol. 197, pp. 171–313. American Mathematical Society, providence, RI (1997)Google Scholar

Copyright information

© Springer-Verlag Tokyo 2007

Authors and Affiliations

  • David Avis
    • 1
  • Naoki Katoh
    • 2
  • Makoto Ohsaki
    • 2
  • Ileana Streinu
    • 3
  • Shin-ichi Tanigawa
    • 2
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada
  2. 2.Department of Architecture and Architectural EngineeringKyoto UniversityKyotoJapan
  3. 3.Department of Computer ScienceSmith CollegeNorthamptonUSA

Personalised recommendations