Graphs and Combinatorics

, Volume 22, Issue 3, pp 341–350 | Cite as

On the Neighbour-Distinguishing Index of a Graph

Article

Abstract

A proper edge colouring of a graph G is neighbour-distinguishing provided that it distinguishes adjacent vertices by sets of colours of their incident edges. It is proved that for any planar bipartite graph G with Δ(G)≥12 there is a neighbour-distinguishing edge colouring of G using at most Δ(G)+1 colours. Colourings distinguishing pairs of vertices that satisfy other requirements are also considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balister, P. N., Bollobás, B., Schelp, R. H.: Vertex distinguishing colorings of graphs with Δ(G)=2, Discrete Math. 252, 17–29 (2002)Google Scholar
  2. 2.
    Balister, P.N., Győri, E., Lehel, J. Schelp, R.H.: Adjacent vertex distinguishing edge- colorings. preprint (2002)Google Scholar
  3. 3.
    Balister, P. N., Kostochka, A., Li, H., Schelp, R. H.: Balanced edge colorings, J. Combin. Theory Ser. B 90, 3–20 (2004)Google Scholar
  4. 4.
    Balister, P. N., Riordan, O.M., Schelp, R. H.: Vertex Distinguishing edge colorings of graphs. J. Graph Theory 42, 95–109 (2003)Google Scholar
  5. 5.
    Bazgan, C., Harkat-Benhamdine, A., Li, H., Woźniak, M.: On the vertex-distinguishing proper edge-colorings of graphs, J. Combin. Theory Ser. B 75, 288–301 (1999)Google Scholar
  6. 6.
    Bazgan, C., Harkat-Benhamdine, A., Li, H., Woźniak, M.: A note on the vertex-distinguishing proper colorings of graphs with large minimum degree. Discrete Math. 236, 37–42 (2001)Google Scholar
  7. 7.
    Burris, A. C.: Vertex-distinguishing edge-colorings, Ph.D. Dissertation, Memphis State University, 1993Google Scholar
  8. 8.
    Burris A. C. and Schelp, R. H.: Vertex-distinguishing proper edge-colorings, J. Graph Theory 26(2), 73–82 (1997)Google Scholar
  9. 9.
    Černý, J., Horňák M., Soták, R.: Observability of a graph, Math. Slovaca 46, 21–31 (1996)Google Scholar
  10. 10.
    Favaron, O. Li, H., Schelp, R.H.: Strong edge colouring of graphs, Discrete Math. 159, 103–109 (1996)Google Scholar
  11. 11.
    Hatami, H., Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95, 246–256 (2005)Google Scholar
  12. 12.
    Horňák, M., Soták, R.: Observability of complete multipartite graphs with equipotent parts, Ars Combin. 41, 289–301 (1995)Google Scholar
  13. 13.
    Horňák, M., Soták, R.: Asymptotic behaviour of the observability of Qn, Discrete Math. 176, 139–148 (1997)Google Scholar
  14. 14.
    McDiarmid, C. J. H., Sánchez-Arroyo, A.: Total colouring regular bipartite graphs is NP-hard, Discrete Math. 124, 155–162 (1994)Google Scholar
  15. 15.
    Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15, 623–626 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Keith Edwards
    • 1
  • Mirko Horňák
    • 2
  • Mariusz Woźniak
    • 3
  1. 1.Division of Applied ComputingUniversity of DundeeDundeeUK
  2. 2.Institute of MathematicsP. J. Šafárik UniversityKošiceSlovakia
  3. 3.Faculty of Applied MathematicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations