Graphs and Combinatorics

, Volume 22, Issue 3, pp 289–295 | Cite as

Coloring Vertices and Faces of Locally Planar Graphs

Article

Abstract

If G is an embedded graph, a vertex-face r-coloring is a mapping that assigns a color from the set {1, . . . ,r} to every vertex and every face of G such that different colors are assigned whenever two elements are either adjacent or incident. Let χvf(G) denote the minimum r such that G has a vertex-face r-coloring. Ringel conjectured that if G is planar, then χvf(G)≤6. A graph G drawn on a surface S is said to be 1-embedded in S if every edge crosses at most one other edge. Borodin proved that if G is 1-embedded in the plane, then χ(G)≤6. This result implies Ringel's conjecture. Ringel also stated a Heawood style theorem for 1-embedded graphs. We prove a slight strengthening of this result. If G is 1-embedded in S, let w(G) denote the edge-width of G, i.e. the length of a shortest non-contractible cycle in G. We show that if G is 1-embedded in S and w(G) is large enough, then the list chromatic number ch(G) is at most 8.

Keywords

Vertex face coloring 1-embedded Locally planar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albertson, M.O., Hutchinson, J.P.: Extending precolorings of subgraphs of locally planar graphs. Europ J Combinatorics 25, 863–871 (2004)Google Scholar
  2. 2.
    Albertson, M.O., Hutchinson, J.P.: The independence ratio and genus of a graph. Trans. Amer. Math. Soc. 226, 161–173 (1977)Google Scholar
  3. 3.
    Böhme, T., Mohar, B., Stiebitz, M.: Dirac's map-color theorem for choosability. J. Graph Theory 32, 327–339 (1999)Google Scholar
  4. 4.
    Borodin, O.: A new proof of a 6-color theorem. J. Graph Theory 19, 507–521 (1995)Google Scholar
  5. 5.
    Borodin, O., Kostochka, A., Raspaud, A., Sopena, E.: Acyclic colouring of 1-planar graphs. Disc Appl Math 114, 29–41 (2001)Google Scholar
  6. 6.
    Hutchinson, J.: personal communicationGoogle Scholar
  7. 7.
    Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York, 1995Google Scholar
  8. 8.
    Korzhik, V.: An infinite series of surfaces with known 1-chromatic number. J. Combin. Theory Ser. B bf 72, 80–90 (1998)Google Scholar
  9. 9.
    Korzhik, V.: On the 1-chromatic number of nonorientable surfaces with large genus, manuscriptGoogle Scholar
  10. 10.
    Kostochka, A.V., Stiebitz, M.: A new lower bound on the number of edges in colour-critical graphs and hypergraphs. J. Combin Theory Ser. B 87, 374–402 (2003)Google Scholar
  11. 11.
    Kostochka, A.V., Stiebitz, M.: A list version of Dirac's theorem on the number of edges in colour-critical graphs. J. Graph Theory 39, 165–177 (2002)Google Scholar
  12. 12.
    Lam, P.C.B., Zhang, Z.: The vertex-face total chromatic number of Halin graphs. Networks 30, Ê167–170 (1997)Google Scholar
  13. 13.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Univ Press, Baltimore, 2001Google Scholar
  14. 14.
    Ringel, G.: A six-colour problem on the sphere, Theory of Graphs (Proc. Colloq. Tihany, 1966). Academic Press, New York, pp 265–269Google Scholar
  15. 15.
    Ringel, G.: A nine color theorem for the torus and Klein bottle, The Theory and Applications of Graphs (Kalamazoo, Mich. 1980). Wiley, New York, 1981, pp 507–515Google Scholar
  16. 16.
    Schumacher, H.: About the chromatic number of 1-embeddable graphs, Graph theory in memory of G.A. Dirac (Sandbjerg, 1985), 397–400, Ann. Discrete Math., 41, North-Holland, Amsterdam, 1989Google Scholar
  17. 17.
    Schumacher, H.: Ein 7-Farbenzatz 1-einbettbarer Graphen auf der projektiven Ebene. Abh. Math. Sem. Univ. Hamburg 54, 5–14 (1984)Google Scholar
  18. 18.
    Thomassen, C.: Five-coloring maps on surfaces. J. Combin. Theory Ser. B 59, 89–105 (1993)Google Scholar
  19. 19.
    Wang, W., Liu, J.: On the vertex face total chromatic number of planar graphs. J. Graph Theory 22, 29–37 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of MathematicsSmith CollegeNorthamptonUSA
  2. 2.Department of MathematicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of MathematicsSimon Fraser UniversityBurnaby

Personalised recommendations