On Graphs Determined by Their Tutte Polynomials
Article
- 151 Downloads
- 16 Citations
Abstract.
We say that a graph G is T-unique if any other graph having the same Tutte polynomial as G is necessarily isomorphic to G. In this paper we show that several well-known families of graphs are T-unique: wheels, squares of cycles, complete multipartite graphs, ladders, Möbius ladders, and hypercubes. In order to prove these results, we show that several parameters of a graph, like the number of cycles of length 3, 4 and 5, and the edge-connectivity are determined by its Tutte polynomial.
Keywords
Tutte Polynomial Complete Multipartite Graph
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Copyright information
© Springer-Verlag Tokyo 2004