Skip to main content
Log in

Physically inspired technique for modeling wet absorbent materials

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The visual appearance of materials depends on their intrinsic light transfer properties, the illumination and camera conditions, and other environmental factors. This is in particular the case of porous, rough, or absorbent materials, where the presence of liquid on the surface alters significantly their BRDF, which in turn results in considerable changes in their visual appearance. For this reason, rendering materials change their appearance when wet continues to be a relevant topic in computer graphics. This is especially true when real-time photo-realistic rendering is required in scenes involving this kind of materials in interaction with water or other liquids. In this paper, we introduce a physically inspired technique to model and render appearance changes of absorbent materials when their surface is wet. First, we develop a new method to solve the interaction between the liquid and the object surface using its own underlying texture coordinates. Then, we propose an algorithm to model the diffusion phenomenon that occurs in the interface between a solid porous object and a liquid. Finally, we extend a model that explains the change of appearance of materials under wet conditions, and we implement it achieving real-time performance. The complete model is developed using GPU acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akenine-Möller, T., Haines, E., Hoffman, N., Pesce, A., Iwanicki, M., Hillaire, S.: Real-Time Rendering, 4th edn. A K Peters/CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  2. Ångström, A.: The albedo of various surfaces of ground. Geografiska Annaler 7, 323–342 (1925)

    Google Scholar 

  3. Azencot, O., Vantzos, O., Wardetzky, M., Rumpf, M., Ben-Chen, M.: Functional thin films on surfaces. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’15, pp. 137–146. ACM, New York, NY, USA (2015)

  4. Bajo, J.M., Patow, G., Delrieux, C.A.: Realistic buoyancy model forreal-time applications. Comput. Graph. Forum. https://doi.org/10.1111/cgf.14013

  5. Borshukov, G., Lewis, J.: Realistic human face rendering for “The Matrix Reloaded”. In: ACM SIGGRAPH 2005 Courses (SIGGRAPH ’05). Association for Computing Machinery, New York, USA (2003). https://doi.org/10.1145/1198555.1198593

  6. Bridson, R.: Fluid Simulation for Computer Graphics. CRC Press, Baco Raton (2008)

    Google Scholar 

  7. Chen, T.F., Baranoski, G.V.G., Kimmel, B.W., Miranda, E.: Hyperspectral modeling of skin appearance. ACM Trans. Graph. 34(3), 31:1–31:14 (2015)

    Article  Google Scholar 

  8. Chu, N.S.H., Tai, C.L.: Moxi: real-time ink dispersion in absorbent paper. ACM Trans. Graph. 24(3), 504–511 (2005)

    Article  Google Scholar 

  9. Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1956)

    MATH  Google Scholar 

  10. d’Eon, E., Luebke, D., Enderton, E.: Efficient rendering of human skin. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, EGSR’07, pp. 147–157. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2007)

  11. Dorsey, J., Rushmeier, H., Sillion, F.: Digital Modeling of Material Appearance. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2008)

    Google Scholar 

  12. Fick, A.: On liquid diffusion. Journal of Membrane Science 100(1), 33–38 (1995)

    Article  Google Scholar 

  13. Gao, M., Pradhana, A., Han, X., Guo, Q., Kot, G., Sifakis, E., Jiang, C.: Animating fluid sediment mixture in particle-laden flows. ACM Trans. Graph. 37(4), 149:1–149:11 (2018)

    Article  Google Scholar 

  14. G’MIC Project. http://gmic.eu/. Accessed 12 Dec 2017

  15. Gu, J., Tu, C.I., Ramamoorthi, R., Belhumeur, P., Matusik, W., Nayar, S.: Time-varying surface appearance: acquisition, modeling and rendering. ACM Trans. Graph. 25(3), 762–771 (2006)

    Article  Google Scholar 

  16. Hall, C., Hoff, W.: Water Transport in Brick, Stone and Concrete. CRC Press, Baco Raton (2009)

    Google Scholar 

  17. Hnat, K., Porquet, D., Merillou, S., Ghazanfarpour, D.: Real-time wetting of porous media. MG&V. 15(3), 401–413 (2006)

    Google Scholar 

  18. Hoetzlein, R.: Fast fixed-radius nearest neighbors: interactive millon-particle fluid. In: GPU Technology Conference (GTC). Santa Clara, CA (2014)

  19. Huber, M., Pabst, S., Strasser, W.: Wet cloth simulation. in: ACM SIGGRAPH 2011 Posters. SIGGRAPH ’11, pp. 10:1–10:1. ACM, New York, NY, USA (2011)

  20. Iwasaki, K., Dobashi, Y., Yoshimoto, F., Nishita, T.: Gpu-based rendering of point-sampled water surfaces. Vis. Comput. 24, 77–84 (2008)

    Article  Google Scholar 

  21. Jensen, H., Legakis, J., Dorsey, J.: Rendering of wet materials. In: Lischinski, D., Larson, G. (eds.) Rendering Techniques 99. Eurographics, pp. 273–281. Springer, Vienna (1999)

    Chapter  Google Scholar 

  22. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 511–518. ACM, New York, NY, USA (2001)

  23. Kattawar, G.W.: A three-parameter analytic phase function for multiple scattering calculations. J. Quant. Spectrosc. Radiat. Transfer 15(9), 839–849 (1975)

    Article  Google Scholar 

  24. Kimmel, B.W., Baranoski, G.V.: A novel approach for simulating light interaction with particulate materials: application to the modeling of sand spectral properties. Opt. Express 15(15), 9755–9777 (2007)

    Article  Google Scholar 

  25. Kimmel, B.W., Baranoski, G.V.: Simulating the appearance of sandy landscapes. Proc. Methods Comput. Graph. Illustrat. Visual. Comput. Graph. 34(4), 441–448 (2010)

    Google Scholar 

  26. Lee, H., Han, S.: Solving the shallow water equations using 2d sph particles for interactive applications. Vis. Comput. 26, 865–872 (2010). https://doi.org/10.1007/s00371-010-0439-9

    Article  Google Scholar 

  27. Lefebvre, S., Hoppe, H.: Perfect spatial hashing. ACM Trans. Graph. 25(3), 579–588 (2006)

    Article  Google Scholar 

  28. Lekner, J., Dorf, M.C.: Why some things are darker when wet. Appl. Opt. 27(7), 1278–1280 (1988)

    Article  Google Scholar 

  29. Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. In: ACM SIGGRAPH 2008 Papers. SIGGRAPH ’08, pp. 49:1–49:8. ACM, New York, NY, USA (2008)

  30. Lin, W.C.: Coupling hair with smoothed particle hydrodynamics fluids. In: Bender, J., Duriez, C., Jaillet, F., Zachmann, G. (eds.) Workshop on Virtual Reality Interaction and Physical Simulation. The Eurographics Association, Aire-la-Ville (2014)

    Google Scholar 

  31. Lin, W.C.: Boundary handling and porous flow for fluid–hair interactions. Comput. Graph. 52, 33–42 (2015)

    Article  Google Scholar 

  32. Liu, Y., Zhu, H., Liu, X., Wu, E.: Real-time simulation of physically based on-surface flow. Vis. Comput. 21(8), 727–734 (2005)

    Article  Google Scholar 

  33. Lu, J., GEORGHIADES, A.S., Rushmeier, H., Dorsey, J., Xu, C.: Synthesis of material drying history: Phenomenon modeling, transferring and rendering. In: Eurographics Workshop on Natural Phenomena (NPH 2005), pp. 7–16. Eurographics Association, Aire-la-Ville (2005)

  34. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:12 (2013)

    Article  Google Scholar 

  35. Merillou, S., Dischler, J.M., Ghazanfarpour, D.: A brdf postprocess to integrate porosity on rendered surfaces. IEEE Trans. Visual. Comput. Graph. 6(4), 306–318 (2000)

    Article  Google Scholar 

  36. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, pp. 154–159. Eurographics Association, Aire-la-Ville, Switzerland (2003)

  37. Muskat, M., Wyckoff, R.: The Flow of Homogeneous Fluids Through Porous Media. International Series in Physics. McGraw-Hill Book Company, New York (1937)

    Google Scholar 

  38. Patkar, S., Chaudhuri, P.: Wetting of porous solids. IEEE Trans. Visual. Comput. Graph. 19(9), 1592–1604 (2013)

    Article  Google Scholar 

  39. Pharr, M., Humphreys, G.: Physically Based Rendering, Second Edition: From Theory To Implementation, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2010)

    Google Scholar 

  40. Rungjiratananon, W., Kanamori, Y., Nishita, T.: Wetting effects in hair simulation. Comput. Graph. Forum 31(7), 1993–2002 (2012)

    Article  Google Scholar 

  41. Rungjiratananon, W., Szego, Z., Kanamori, Y., Nishita, T.: Real-time animation of sand-water interaction. Comput. Graph. Forum 27(7), 1887–1893 (2008)

    Article  Google Scholar 

  42. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, ACM ’68, pp. 517–524. ACM, New York, NY, USA (1968)

  43. Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 121–128. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999)

  44. Stern, F.: Transmission of isotropic radiation across an interface between two dielectrics. Appl. Opt. 3(1), 111–113 (1964)

    Article  Google Scholar 

  45. Vantzos, O., Raz, S., Ben-Chen, M.: Real-time viscous thin films. ACM Trans. Graph. 37(6), 281:1–281:10 (2018)

    Google Scholar 

  46. Wang, H., Miller, G., Turk, G.: Solving general shallow wave equations on surfaces. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pp. 229–238. Eurographics Association, Aire-la-Ville, Switzerland (2007)

  47. Weidlich, A., Wilkie, A.: Thinking in layers: modeling with layered materials. In: SIGGRAPH Asia 2011 Courses. SA ’11, pp. 20:1–20:43. ACM, New York, NY, USA (2011)

  48. Yan, H., Wang, Z., He, J., Chen, X., Wang, C., Peng, Q.: Real-time fluid simulation with adaptive sph. Comput. Anim. Virt. Worlds 20(2–3), 417–426 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

JB was partially supported by a scholarship of the National Science and Technology Council of Argentina (CONICET). The research was partially funded by grant 24/K061 of the Universidad Nacional del Sur (Argentina). CD is supported by the Electric and Computing Dept. of the Universidad Nacional del Sur and the National Science and Technology Council of Argentina (CONICET). GP was partially funded by the TIN2017-88515-C2-2-R project from Ministerio de Ciencia, Innovación y Universidades, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Miguel Bajo.

Ethics declarations

Conflict of interest

JB, CD, and GP declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (m4v 74524 KB)

Supplementary material 2 (pdf 1143 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajo, J.M., Delrieux, C. & Patow, G. Physically inspired technique for modeling wet absorbent materials. Vis Comput 37, 2053–2068 (2021). https://doi.org/10.1007/s00371-020-01963-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01963-w

Keywords

Navigation