Advertisement

Point set registration based on feature point constraints

  • Mai Li
  • Mingxuan Zhang
  • Dongmei Niu
  • Muhammad Umair Hassan
  • Xiuyang ZhaoEmail author
  • Na Li
Original Article
  • 32 Downloads

Abstract

Point set registration is a fundamental task in computer graphics. We present a novel volumetric registration method for three-dimensional solid shapes. The input data include a pair of three-dimensional point sets: a point set of a complete bone and another one from an incomplete bone, such as a hand bone with a hole in the wrist. We achieve the registration by deforming the complete model toward the incomplete model in the guidance of feature point constraints. Our method first performs an initial alignment owing to given data in an arbitrary position, orientation and scale, and then performs a volumetric registration that utilizes as much volumetric information as possible. Our solution is more adaptive to different sceneries such as the volume data have foramen, outlier and hole, and more accurate in comparison with both state-of-the-art rigid and non-rigid registration algorithms.

Keywords

Computer graphics Point set registration Point-based models Volumetric registration 

Notes

Funding

This research was supported by Natural Science Foundation of Shandong province (Nos. ZR2019MF 013, ZR2019BF026), Project of Jinan Scientific Research Leader’s Laboratory (No. 2018GXRC023), and Doctoral Program of University of Jinan (No. 160100313) supported this work. Funding was provided by National Natural Science Foundation of China (Grant Nos. 61373054, 61472164, 61573166, and 61572230).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27(3), 85:1–85:10 (2008)CrossRefGoogle Scholar
  2. 2.
    Alexandre, L.A.: 3d descriptors for object and category recognition: a comparative evaluation. In: IEEE International Conference on Intelligent Robotic Systems-IROS Workshop on Color-Depth Camera Fusion in Robotics, pp. 1–6 (2012)Google Scholar
  3. 3.
    Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)CrossRefGoogle Scholar
  4. 4.
    Bergevin, R., Soucy, M., Gagnon, H., Laurendeau, D.: Towards a general multi-view registration technique. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 540–547 (1996)CrossRefGoogle Scholar
  5. 5.
    Bernardini, F., Rushmeier, H., Martin, I.M., Mittleman, J., Taubin, G.: Building a digital model of michelangelo’s florentine pieta. IEEE Comput. Graph. Appl. 22(1), 59–67 (2002)CrossRefGoogle Scholar
  6. 6.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  7. 7.
    Cao, G.G., Luo, L.M.: Non-rigid medical image registration based on mutual information and thin-plate spline. Chin. J. Med. Instrum. 33(1), 11–14 (2009)MathSciNetGoogle Scholar
  8. 8.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of 1991 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2724–2729 (1991)Google Scholar
  9. 9.
    Cheng, Z.Q., Jiang, W., Dang, G., Martin, R.R., Li, J., Li, H., Chen, Y., Wang, Y., Li, B., Xu, K., Jin, S.: Non-rigid registration in 3d implicit vector space. In: Proceedings of the 2010 Shape Modeling International Conference, SMI ’10, pp. 37–46. IEEE Computer Society, Washington, DC, USA (2010)Google Scholar
  10. 10.
    Deng, W., Zou, H., Guo, F., Lei, L., Zhou, S., Luo, T.: A robust non-rigid point set registration method based on inhomogeneous Gaussian mixture models. Vis. Comput. 34, 1399–1414 (2017) CrossRefGoogle Scholar
  11. 11.
    Fujiwara, K., Nishino, K., Takamatsu, J., Zheng, B., Ikeuchi, K.: Locally rigid globally non-rigid surface registration. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV ’11, pp. 1527–1534. IEEE Computer Society, Washington, DC, USA (2011)Google Scholar
  12. 12.
    Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP ’05, p. 197. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2005)Google Scholar
  13. 13.
    Hahnel, D., Thrun, S., Burgard, W.: An extension of the icp algorithm for modeling nonrigid objects with mobile robots. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI’03, pp. 915–920. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2003)Google Scholar
  14. 14.
    Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM SIGGRAPH 2006 Papers. SIGGRAPH ’06, pp. 569–578. ACM, New York, NY, USA (2006)Google Scholar
  15. 15.
    Ikemoto, L., Gelfand, N., Levoy, M.: A hierarchical method for aligning warped meshes. In: International Conference on 3-D Digital Imaging and Modeling, 2003. 3dim 2003. Proceedings, pp. 434–441 (2003)Google Scholar
  16. 16.
    Jones, M.W., Baerentzen, J.A., Sramek, M.: 3d distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)CrossRefGoogle Scholar
  17. 17.
    Kang, D., Zhao, X., Niu, D., Liu, M.: A volumetric shape registration based on locally affine-invariant constraint, vol. 1, pp. 504–511 (2017).  https://doi.org/10.1109/CSE-EUC.2017.95
  18. 18.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2(1–2), 83–97 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Levoy, M., Rusinkiewicz, S.: Efficient variants of the ICP algorithm. In: International Conference on 3D Digital Imaging and Modeling, p. 145 (2001)Google Scholar
  20. 20.
    Li, H., Vouga, E., Gudym, A., Luo, L., Barron, J.T., Gusev, G.: 3d self-portraits. ACM Trans. Graph. 32(6), 1–9 (2013)Google Scholar
  21. 21.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  22. 22.
    Postelnicu, G., Zollei, L., Desikan, R., Fischl, B.: Geometry driven volumetric registration. In: Proceedings of the 20th International Conference on Information Processing in Medical Imaging, IPMI’07, pp. 675–686. Springer, Berlin, Heidelberg (2007)Google Scholar
  23. 23.
    Sahillioğlu, Y., Kavan, L.: Skuller: a volumetric shape registration algorithm for modeling skull deformities. Med. Image Anal. 23(1), 15–27 (2015)CrossRefGoogle Scholar
  24. 24.
    Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine surface reconstruction from silhouettes and range data using mesh deformation. Comput. Vis. Image Underst. 114(3), 334–348 (2010)CrossRefGoogle Scholar
  25. 25.
    Sahillioğlu, Y., Yemez, Y.: Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2203–15 (2012)CrossRefGoogle Scholar
  26. 26.
    Shum, H.Y., Szeliski, R.: Systems and experiment paper: construction of panoramic image mosaics with global and local alignment. Int. J. Comput. Vis. 36(2), 101–130 (2000)CrossRefGoogle Scholar
  27. 27.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pp. 109–116. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2007)Google Scholar
  28. 28.
    Tam, G.K., Cheng, Z.Q., Lai, Y.K., Langbein, F., Liu, Y., Marshall, A.D., Martin, R., Sun, X., Rosin, P.: Registration of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Graph. 19(7), 1199–1217 (2013)CrossRefGoogle Scholar
  29. 29.
    Taubin, G.: A signal processing approach to fair surface design. In: Conference on Computer Graphics and Interactive Techniques, pp. 351–358 (1995)Google Scholar
  30. 30.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Computer Vision—ECCV 2010, pp. 356–369. Springer, Berlin, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Zhang, R., Chen, X., Shiratori, T., Tong, X., Liu, L.: An efficient volumetric method for non-rigid registration. Graph. Models 79(Suppl C), 1–11 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Science and EngineeringUniversity of JinanJinanPeople’s Republic of China
  2. 2.School of Computing Science and Information EngineeringQilu Institute of TechnologyJinanPeople’s Republic of China

Personalised recommendations