Advertisement

Survey of cube mapping methods in interactive computer graphics

  • M. LambersEmail author
Survey
  • 31 Downloads

Abstract

The standard cube mapping technique implemented in graphics pipelines, while useful in many scenarios, has significant shortcomings for important application areas in interactive computer graphics, e.g., dynamic environment mapping, omnidirectional shadow maps, or planetary-scale terrain rendering. Many alternative mapping methods have been proposed over the years with the purpose of reducing area and/or angular distortions. In this paper, we give an overview of methods suitable for interactive applications and analyze their properties. Furthermore, we evaluate a set of additional transformation functions and identify a simple new method with favorable distortion properties.

Keywords

Cube maps Environment maps Distortion 

Notes

Acknowledgements

The polygonal world map data used in the example maps in Tables 1 and 2 are provided by Bjorn Sandvik, http://thematicmapping.org/downloads/world_borders.php, license CC BY-SA 3.0.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

Supplementary material

371_2019_1708_MOESM1_ESM.xz (2.2 mb)
Supplementary material 1 (xz 2267 KB)

References

  1. 1.
    Arvo, J.: Stratified sampling of 2-manifolds. In: SIGGRAPH Coure Notes (2001)Google Scholar
  2. 2.
    Bitterli, B., Novák, J., Jarosz, W.: Portal-masked environment map sampling. Comput. Graph. Forum 34(4), 13–19 (2015).  https://doi.org/10.1111/cgf.12674 Google Scholar
  3. 3.
    Calabretta, M., Greisen, E.: Representations of celestial coordinates in FITS. Astron. Astrophys. 395(3), 1077–1122 (2002).  https://doi.org/10.1051/0004-6361:20021327 Google Scholar
  4. 4.
    Calabretta, M.R., Roukema, B.F.: Mapping on the HEALPix grid. Mon. Not. R. Astron. Soc. 381(2), 865–872 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12297.x Google Scholar
  5. 5.
    Chan, F., O’Neill, E.: Feasibility study of a quadrilateralized spherical cube earth data base. In: Technical Report EPRF 2-75 (CSC), Environmental Prediction Research Facility. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/ADA010232.xhtml (1975). Accessed 28 Nov 2018
  6. 6.
    Dimitrijević, A., Lambers, M., Rančić, D.: Comparison of spherical cube map projections used in planet-sized terrain rendering. Facta Univ., Ser.: Math. Inform. 31(2), 259–297 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Everitt, C.: “Projection” repository. https://github.com/casseveritt/projection/ (2016). Accessed 28 Nov 2018
  8. 8.
    Gascuel, J.D., Holzschuch, N., Fournier, G., Péroche, B.: Fast non-linear projections using graphics hardware. In: Proceedings Symposium Interactive 3D Graphics and Games (I3D), pp. 107–114 (2008).  https://doi.org/10.1145/1342250.1342267
  9. 9.
    Greene, N.: Environment mapping and other applications of world projections. IEEE Comput. Graph. Appl. 6(11), 21–29 (1986).  https://doi.org/10.1109/MCG.1986.276658 Google Scholar
  10. 10.
    Grimm, C.M., Niebruegge, B.: Continuous cube mapping. J. Graph., GPU, Game Tools 12(4), 25–34 (2007).  https://doi.org/10.1080/2151237X.2007.10129250 Google Scholar
  11. 11.
    Harrison, E., Mahdavi-Amiri, A., Samavati, F.: Optimization of inverse snyder polyhedral projection. In: International Conference on Cyberworlds, pp. 136–143 (2011).  https://doi.org/10.1109/CW.2011.36
  12. 12.
    Ho, T.Y., Wan, L., Leung, C.S., Lam, P.M., Wong, T.T.: Unicube for dynamic environment mapping. IEEE Trans. Vis. Comput. Graph. 17(1), 51–63 (2011).  https://doi.org/10.1109/TVCG.2009.205 Google Scholar
  13. 13.
    Kemen, B., Hrabcak, L.: Outerra. http://www.outerra.com (2014). Accessed 28 Nov 2018
  14. 14.
    Kooima, R., Leigh, J., Johnson, A., Roberts, D., SubbaRao, M., DeFanti, T.A.: Planetary-scale terrain composition. IEEE Trans. Vis. Comput. Graph. 15(5), 719–733 (2009).  https://doi.org/10.1109/TVCG.2009.43 Google Scholar
  15. 15.
    Lambers, M.: Mappings between sphere, disc, and square. J. Comput. Graph. Tech. 5(2), 1–21 (2016)MathSciNetGoogle Scholar
  16. 16.
    Lambers, M., Kolb, A.: Ellipsoidal cube maps for accurate rendering of planetary-scale terrain data. In: Proceedings Pacific Graphics (Short Papers), pp. 5–10 (2012).  https://doi.org/10.2312/PE/PG/PG2012short/005-010
  17. 17.
    Lambers, M., Sommerhoff, H., Kolb, A.: Realistic lens distortion rendering. In: Proceedings International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG). http://wscg.zcu.cz/wscg2018/2018-WSCG-Papers-Separated.html (2018). Accessed 28 Nov 2018
  18. 18.
    Lee, L.: Conformal projections based on Jacobian elliptic functions. Cartogr.: Int. J. Geogr. Inf. Geovisualization 13(1), 67–101 (1976).  https://doi.org/10.3138/X687-1574-4325-WM62 Google Scholar
  19. 19.
    Lerbour, R., Marvie, J.E., Gautron, P.: Adaptive real-time rendering of planetary terrains. In: Proceedings International Conference Computer Graphics, Visualization and Computer Vision (WSCG). http://wscg.zcu.cz/WSCG2010/Papers_2010/!_2010_FULL-proceedings.pdf (2010). Accessed 28 Nov 2018
  20. 20.
    Nowell, P.: Mapping a cube to a sphere. http://mathproofs.blogspot.de/2005/07/mapping-cube-to-sphere.html (2005). Accessed 28 Nov 2018
  21. 21.
    O’Neill, E., Laubscher, R.: Extended studies of a quadrilateralized spherical cube earth data base. Technical Report NEPRF 3-76 (CSC), Naval Environmental Prediction Research Facility. http://www.dtic.mil/docs/citations/ADA026294 (1976). Accessed 28 Nov 2018
  22. 22.
    Rančić, M., Purser, R.J., Mesinger, F.: A global shallow-water model using an expanded spherical cube: gnomonic versus conformal coordinates. Q. J. R. Meteorol. Soc. 122(532), 959–982 (1996).  https://doi.org/10.1002/qj.49712253209 Google Scholar
  23. 23.
    Ronchi, C., Iacono, R., Paolucci, P.S.: The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124(1), 93–114 (1996).  https://doi.org/10.1006/jcph.1996.0047 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Roşca, D., Plonka, G.: Uniform spherical grids via equal area projection from the cube to the sphere. J. Comput. Appl. Math. 236(6), 1033–1041 (2011).  https://doi.org/10.1016/j.cam.2011.07.009 MathSciNetzbMATHGoogle Scholar
  25. 25.
    Scherzer, D., Wimmer, M., Purgathofer, W.: A survey of real-time hard shadow mapping methods. Comput. Graph. Forum 30(1), 169–186 (2011).  https://doi.org/10.1111/j.1467-8659.2010.01841.x Google Scholar
  26. 26.
    Snyder, J.: Map Projections—A Working Manual, Professional Paper, vol. 1395. US Geological Survey (1987).  https://doi.org/10.3133/pp1395
  27. 27.
    Snyder, J.: An equal-area map projection for polyhedral globes. Cartographica 29(1), 10–21 (1992).  https://doi.org/10.3138/27H7-8K88-4882-1752 Google Scholar
  28. 28.
    Snyder, J., Mitchell, D.: Sampling-efficient mapping of spherical images. In: Microsoft Research Technical Report. https://www.microsoft.com/en-us/research/publication/sampling-efficient-mapping-spherical-images/ (2001). Accessed 28 Nov 2018
  29. 29.
    Various: Mapping a sphere to a cube. http://stackoverflow.com/questions/2656899/mapping-a-sphere-to-a-cube (2010). Accessed 28 Nov 2018
  30. 30.
    Wan, L., Wong, T.T., Leung, C.S.: Isocube: exploiting the cubemap hardware. IEEE Trans. Vis. Comput. Graph. 13(4), 720–731 (2007).  https://doi.org/10.1109/TVCG.2007.1020 Google Scholar
  31. 31.
    Wong, T.T., Wan, L., Leung, C.S., Lam, P.M.: Shader X4: Advanced Rendering Techniques, Chap. Real-Time Environment Mapping with Equal Solid-Angle Spherical Quad-Map, pp. 221–233. Charles River Media (2006)Google Scholar
  32. 32.
    Zucker, M., Higashi, Y.: Cube-to-sphere projections for procedural texturing and beyond. J. Comput. Graph. Tech. (JCGT) 7(2), 1–22 (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computer Graphics GroupUniversity of SiegenSiegenGermany

Personalised recommendations