The Visual Computer

, Volume 35, Issue 6–8, pp 885–897 | Cite as

AniCode: authoring coded artifacts for network-free personalized animations

  • Zeyu Wang
  • Shiyu QiuEmail author
  • Qingyang Chen
  • Natallia Trayan
  • Alexander Ringlein
  • Julie Dorsey
  • Holly Rushmeier
Original Article


Time-based media are used in applications ranging from demonstrating the operation of home appliances to explaining new scientific discoveries. However, creating effective time-based media is challenging. We introduce a new framework for authoring and consuming time-based media. An author encodes an animation in a printed code and affixes the code to an object. A consumer captures an image of the object through a mobile application, and the image together with the code is used to generate a video on their local device. Our system is designed to be low cost and easy to use. By not requiring an Internet connection to deliver the animation, the framework enhances privacy of the communication. By requiring the user to have a direct line-of-sight view of the object, the framework provides personalized animations that only decode in the intended context. Animation schemes in the system include 2D and 3D geometric transformations, color transformation, and annotation. We demonstrate the new framework with sample applications from a wide range of domains. We evaluate the ease of use and effectiveness of our system with a user study.


Authoring time-based media Encoding animations Personalized demonstrations Network-free communication 


Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (mp4 347410 KB)

Supplementary material 2 (mp4 338771 KB)


  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  2. 2.
    Agrawala, M., Li, W., Berthouzoz, F.: Design principles for visual communication. Commun. ACM 54(4), 60–69 (2011)CrossRefGoogle Scholar
  3. 3.
    Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., Tversky, B.: Designing effective step-by-step assembly instructions. ACM Trans. Gr. 22(3), 828–837 (2003)CrossRefGoogle Scholar
  4. 4.
    Andolina, S., Pirrone, D., Russo, G., Sorce, S., Gentile, A.: Exploitation of Mobile Access to Context-Based Information in Cultural Heritage Fruition. In: Proceedings of the International Conference on Broadband, Wireless Computing, Communication and Applications, pp. 322–328. IEEE (2012)Google Scholar
  5. 5.
    Appiah, O.: Rich media, poor media: The impact of audio/video vs. text/picture testimonial ads on browsers’ evaluations of commercial web sites and online products. J. Curr. Issues Res. Advert. 28(1), 73–86 (2006)CrossRefGoogle Scholar
  6. 6.
    Ashok, A.: Design, modeling, and analysis of visual mimo communication. Ph.D. thesis, Rutgers The State University of New Jersey-New Brunswick (2014)Google Scholar
  7. 7.
    Badam, S.K., Elmqvist, N.: Visfer: camera-based visual data transfer for cross-device visualization. Inf. Vis. 18(1), 68–93 (2019)CrossRefGoogle Scholar
  8. 8.
    Barak, M., Ashkar, T., Dori, Y.J.: Teaching science via animated movies: its effect on students’ thinking and motivation. Comput. Edu. 56(3), 839–846 (2011)CrossRefGoogle Scholar
  9. 9.
    Van den Bergh, M., Boix, X., Roig, G., de Capitani, B., Van Gool, L.: Seeds: Superpixels extracted via energy-driven sampling. In: Proceedings of the European Conference on Computer Vision, pp. 13–26. Springer (2012)Google Scholar
  10. 10.
    Carter, S., Cooper, M., Adcock, J., Branham, S.: Tools to support expository video capture and access. Educ. Inf. Technol. 19(3), 637–654 (2014)CrossRefGoogle Scholar
  11. 11.
    Carter, S., Qvarfordt, P., Cooper, M., Mäkelä, V.: Creating tutorials with web-based authoring and heads-up capture. IEEE Pervasive Comput. 14(3), 44–52 (2015)CrossRefGoogle Scholar
  12. 12.
    Chang, C.S., Chu, H.K., Mitra, N.J.: Interactive videos: plausible video editing using sparse structure points. Comput. Gr. Forum 35(2), 489–500 (2016)CrossRefGoogle Scholar
  13. 13.
    Cho, N.H., Wu, Q., Xu, J., Zhang, J.: Content authoring using single image in urban environments for augmented reality. In: Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, pp. 1–7. IEEE (2016)Google Scholar
  14. 14.
    Chu, J., Bryan, C., Shih, M., Ferrer, L., Ma, K.L.: Navigable videos for presenting scientific data on affordable head-mounted displays. In: Proceedings of the ACM Conference on Multimedia Systems, pp. 250–260. ACM (2017)Google Scholar
  15. 15.
    Clarine, B.: 11 reasons why video is better than any other medium. (2016)
  16. 16.
    Feiner, S.K., McKeown, K.R.: Automating the generation of coordinated multimedia explanations. Computer 24(10), 33–41 (1991)CrossRefGoogle Scholar
  17. 17.
    Fidas, C., Sintoris, C., Yiannoutsou, N., Avouris, N.: A survey on tools for end user authoring of mobile applications for cultural heritage. In: Proceedings of the International Conference on Information, Intelligence, Systems and Applications, pp. 1–5 (2015)Google Scholar
  18. 18.
    Hern, A.: Fitness tracking app strava gives away location of secret us army bases. The Guardian (2018).
  19. 19.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! the challenges and opportunities of social media. Bus. Horizons 53(1), 59–68 (2010)CrossRefGoogle Scholar
  20. 20.
    Karat, C.M., Pinhanez, C., Karat, J., Arora, R., Vergo, J.: Less clicking, more watching: Results of the iterative design and evaluation of entertaining web experiences. In: Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction, pp. 455–463 (2001)Google Scholar
  21. 21.
    Li, D., Nair, A.S., Nayar, S.K., Zheng, C.: AirCode: Unobtrusive physical tags for digital fabrication. In: Proceedings of the ACM Symposium on User Interface Software and Technology, pp. 449–460. ACM (2017)Google Scholar
  22. 22.
    Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1356–1363 (2015)Google Scholar
  23. 23.
    Liao, I., Hsu, W.H., Ma, K.L.: Storytelling via navigation: A novel approach to animation for scientific visualization. In: M. Christie, T.Y. Li (eds.) Proceedings of the International Symposium on Smart Graphics, pp. 1–14. Springer International Publishing, Cham (2014)Google Scholar
  24. 24.
    Lin, S.S., Hu, M.C., Lee, C.H., Lee, T.Y.: Efficient qr code beautification with high quality visual content. IEEE Trans. Multimed. 17(9), 1515–1524 (2015)CrossRefGoogle Scholar
  25. 25.
    McKercher, B., Du Cros, H.: Cultural Tourism: The Partnership Between Tourism and Cultural Heritage Management. Routledge, Abingdon (2002)Google Scholar
  26. 26.
    OpenCV team: OpenCV for Android SDK. (2017)
  27. 27.
    Owen, S., Switkin, D., team, Z.: ZXing barcode scanning library. (2017)
  28. 28.
    Parent, R.: Computer Animation: Algorithms and Techniques. Newnes, Oxford (2012)Google Scholar
  29. 29.
    Revell, T.: App creates augmented-reality tutorials from normal videos. New Scientist (2017).
  30. 30.
    Schnotz, W.: Commentary: towards an integrated view of learning from text and visual displays. Educ. Psychol. Rev. 14(1), 101–120 (2002)CrossRefGoogle Scholar
  31. 31.
    Telea, A.: An image inpainting technique based on the fast marching method. J. Gr. Tools 9(1), 23–34 (2004)CrossRefGoogle Scholar
  32. 32.
    Upson, C., Faulhaber Jr., T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R., Van Dam, A.: The application visualization system: a computational environment for scientific visualization. IEEE Comput. Gr. Appl. 9(4), 30–42 (1989)CrossRefGoogle Scholar
  33. 33.
    Wouters, P., Paas, F., van Merriënboer, J.J.: How to optimize learning from animated models: a review of guidelines based on cognitive load. Rev. Educ. Res. 78(3), 645–675 (2008)CrossRefGoogle Scholar
  34. 34.
    Xiao, C., Zhang, C., Zheng, C.: FontCode: Embedding information in text documents using glyph perturbation. ACM Trans. Gr. 37(2), 15 (2018)CrossRefGoogle Scholar
  35. 35.
    Yeshurun, Y., Carrasco, M.: Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396(6706), 72–75 (1998)CrossRefGoogle Scholar
  36. 36.
    Yuan, W., Dana, K., Varga, M., Ashok, A., Gruteser, M., Mandayam, N.: Computer vision methods for visual mimo optical system. In: CVPR Workshops, pp. 37–43 (2011)Google Scholar
  37. 37.
    Yue, Y.T., Yang, Y.L., Ren, G., Wang, W.: SceneCtrl: Mixed reality enhancement via efficient scene editing. In: Proceedings of the ACM Symposium on User Interface Software and Technology, pp. 427–436. ACM (2017)Google Scholar
  38. 38.
    Zheng, Y., Chen, X., Cheng, M.M., Zhou, K., Hu, S.M., Mitra, N.J.: Interactive images: cuboid proxies for smart image manipulation. ACM Trans. Gr. 31(4), 99 (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zeyu Wang
    • 1
  • Shiyu Qiu
    • 1
    Email author
  • Qingyang Chen
    • 1
  • Natallia Trayan
    • 1
  • Alexander Ringlein
    • 1
  • Julie Dorsey
    • 1
  • Holly Rushmeier
    • 1
  1. 1.Department of Computer ScienceYale UniversityNew HavenUSA

Personalised recommendations