Advertisement

Simultaneous segmentation and correction model for color medical and natural images with intensity inhomogeneity

  • Yunyun YangEmail author
  • Wenjing Jia
  • Boying Wu
Original Article
  • 30 Downloads

Abstract

In this paper, a new level set formulation that can simultaneously segment and correct color images is proposed by combining the illumination and reflectance estimation (IRE) model, the level set method and the split Bregman method. The advantages of our model are mainly summarized in three aspects. First, our model can effectively extract the intensity change information in the images, regarded as the bias field. Based on the accurate segmentation results, our model can correct the inhomogeneous color images by removing the estimated bias field from the original images. Second, the application of the split Bregman method accelerates the iterative process and computational speed, making our model more efficient. Third, the use of the edge detection function in the energy functional makes it easier for our model to detect the target boundary. Perfectly absorbing the above three advantages, our model is applied to segment color medical and natural images with intensity inhomogeneity. Experimental results demonstrate that our model can accurately segment color images and get satisfactory correction images with intensity homogeneity. In addition, numerical comparison results further indicate that the performance of our model for segmentation and correction is significantly superior to the IRE model.

Keywords

Level set method Intensity inhomogeneity Split Bregman method Image segmentation Correction Color images 

Mathematics Subject Classification

90C47 65K10 49M37 

Notes

Funding

This study was funded by Shenzhen Fundamental Research Plan (No. JCYJ20160505175141489).

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Bi, L., Kim, J., Kumar, A., Fulham, M., Feng, D.G.: Stacked fully convolutional networks with multi-channel learning: application to medical image segmentation. Visual Comput. 33(6–8), 1061–1071 (2017)Google Scholar
  2. 2.
    Cai, Q., Liu, H.Y., Zhou, S.P., Sun, J.F., Li, J.: An adaptive-scale active contour model for inhomogeneous image segmentation and bias field estimation. Pattern Recognit. 82, 79–93 (2018)Google Scholar
  3. 3.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)zbMATHGoogle Scholar
  4. 4.
    Chan, T.E., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)Google Scholar
  5. 5.
    Chan, T.F., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)zbMATHGoogle Scholar
  7. 7.
    Feng, C.L., Zhao, D.Z., Huang, M.: Image segmentation and bias correction using local inhomogeneous intensity clustering (LINC): a region-based level set method. Neurocomputing 219, 107–129 (2017)Google Scholar
  8. 8.
    Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1–3), 272–293 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hettiarachchi, R., Peters, J.F.: Voronoi region-based adaptive unsupervised color image segmentation. Pattern Recognit. 65, 119–135 (2017)Google Scholar
  11. 11.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)zbMATHGoogle Scholar
  12. 12.
    Le, Y., Xu, X.Z., Zha, L., Zhao, W.C., Zhu, Y.Y.: Tumour localisation in ultrasound-guided high-intensity focused ultrasound ablation using improved gradient and direction vector flow. IET Image Process. 9(10), 857–865 (2015)Google Scholar
  13. 13.
    Li, C., Gore, J.C., Davatzikos, C.: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32(7), 913–923 (2014)Google Scholar
  14. 14.
    Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Li, C., Li, F., Kao, C.Y., Xu, C.: Image segmentation with simultaneous illumination and reflectance estimation: an energy minimization approach. In: 2009 IEEE 12th International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 702–708 (2009)Google Scholar
  16. 16.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Li, C.M., Huang, R., Ding, Z.H., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Li, Y., Shen, L.: Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2), 322–329 (2018)Google Scholar
  19. 19.
    Min, H., Jia, W., Zhao, Y., Zuo, W.M., Ling, H.B., Luo, Y.T.: LATE: a level-set method based on local approximation of Taylor expansion for segmenting intensity inhomogeneous images. IEEE Trans. Image Process. 27(10), 5016–5031 (2018)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Paulano, F., Jimenez, J.J., Pulido, R.: 3d Segmentation and labeling of fractured bone from ct images. Visual Comput. 30(6–8), 939–948 (2014)Google Scholar
  22. 22.
    Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5), 856–876 (2001)Google Scholar
  23. 23.
    Song, L.: Image segmentation based on supervised discriminative learning. Int. J. Pattern Recognit. Artif. Intell. 32(10), 1854027 (2018)Google Scholar
  24. 24.
    Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.Y.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. J. Comput. Med. Imaging Graph. 33(7), 520–531 (2009)Google Scholar
  25. 25.
    Wang, Y.L., Yang, J.F., Yin, W.T., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Xian, M., Zhang, Y.T., Cheng, H.D., Xu, F., Zhang, B.Y., Ding, J.R.: Automatic breast ultrasound image segmentation: a survey. Pattern Recognit. 79, 340–355 (2018)Google Scholar
  27. 27.
    Xiao, C.X., Gan, J.J., Hu, X.Y.: Fast level set image and video segmentation using new evolution indicator operators. Visual Comput. 29(1), 27–39 (2013)Google Scholar
  28. 28.
    Xing, F.Y., Xie, Y.P., Yang, L.: An automatic learning-based framework for robust nucleus segmentation. IEEE Trans. Med. Imaging 35(2), 550–566 (2016)Google Scholar
  29. 29.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Xu, G., Li, X., Lei, B., Lv, K.: Unsupervised color image segmentation with color-alone feature using region growing pulse coupled neural network. Neurocomputing 306, 1–16 (2018)Google Scholar
  31. 31.
    Yang, Y., Boying, W.: Split Bregman method for minimization of improved active contour model combining local and global information dynamically. J. Math. Anal. Appl. 389(1), 351–366 (2012)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Yang, Y., Li, C., Kao, C.Y., Osher, S.: Split Bregman method for minimization of region-scalable fitting energy for image segmentation. In: International Symposium on Visual Computing (ISVC). Lecture Notes in Computer Science, vol 6454, pp. 117–128. Springer, Berlin (2010)Google Scholar
  33. 33.
    Yang, Y., Wu, B.: A new and fast multiphase image segmentation model for color images. Math. Probl. Eng. 2012, 494761 (2012)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yang, Y., Zhao, Y., Wu, B., Wang, H.: A fast multiphase image segmentation model for gray images. Comput. Math. Appl. 67(8), 1559–1581 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Zha, Z.Y., Liu, X., Zhang, X.G., Chen, Y., Tang, L., Bai, Y., Wang, Q., Shang, Z.H.: Compressed sensing image reconstruction via adaptive sparse nonlocal regularization. Visual Comput. 34(1), 117–137 (2018)Google Scholar
  36. 36.
    Zhang, H.Z., Xie, X.H.: Divergence of gradient convolution: deformable segmentation with arbitrary initializations. IEEE Trans. Image Process. 24(11), 3902–3914 (2015)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Zhang, T.: Optimized fuzzy clustering algorithms for brain MRI image segmentation based on local Gaussian probability and anisotropic weight models. Int. J. Pattern Recognit. Artif. Intell. 32(9), 1857005 (2018)MathSciNetGoogle Scholar
  38. 38.
    Zhong, F., Qin, X.Y., Peng, Q.S.: Robust image segmentation against complex color distribution. Visual Comput. 27(6–8), 707–716 (2011)Google Scholar
  39. 39.
    Zhou, Y.F., Pan, X., Wang, W.P., Yin, Y.L., Zhang, C.M.: Superpixels by bilateral geodesic distance. IEEE Trans. Circuits Syst. Video 27(11), 2281–2293 (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Harbin Institute of TechnologyShenzhenChina
  2. 2.Harbin Institute of TechnologyHarbinChina

Personalised recommendations