Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Candidate-based matching of 3-D point clouds with axially switching pose estimation

  • 120 Accesses

  • 1 Citations

Abstract

In 3-D pattern matching, a reconstructed 3-D data point cloud of an object can be matched with the 3-D model point cloud to determine the object pose by employing the iterative closest point (ICP) algorithm. Typical ICP algorithm is time-consuming and may get stuck in local minimum if the pose difference between the two point clouds is not small enough. To resolve this uncertainty problem and enhance the matching capability, the candidate-based axially switching (CBAS) computed closer point (CCP) approach is proposed which is efficient, effective, and robust. It is based on evaluating origin candidates in the model point cloud to determine the approximate pose of the data point cloud. The proposed CBAS-CCP approach allows large uncertainty of the pose difference between the model and the object. The applicability and effectiveness of the proposed approach has been successfully validated by experimenting with 3-D data of real objects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    Altantsetseg, E., Khorloo, O., Konno, K.: Rigid registration of noisy point clouds based on higher-dimensional error metrics. Vis. Comput. 34(6), 1021–1030 (2018). https://doi.org/10.1007/s00371-018-1534-6

  2. 2.

    Arrigoni, F., Rossi, B., Fusiello, A.: Global registration of 3D point sets via LRS decomposition. In: Proceedings of Computer Vision—ECCV 2016, pp. 489–504. Amsterdam, The Netherlands (2016)

  3. 3.

    Basdogan, C., Oztireli, A.C.: A new feature-based method for robust and efficient rigid-body registration of overlapping point clouds. Vis. Comput. 24(7–9), 679–688 (2008). https://doi.org/10.1007/s00371-008-0248-6

  4. 4.

    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975). https://doi.org/10.1145/361002.361007

  5. 5.

    Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

  6. 6.

    Chang, W.C., Pham, V.T.: An efficient neural network with performance-based switching of candidate optimizers for point cloud matching. In: Proceedings of the 6th International Conference on Control, Mechatronics and Automation, ICCMA 2018, pp. 159–164. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3284516.3284525

  7. 7.

    Chen, J., Wu, X., Wang, M.Y., Li, X.: 3D shape modeling using a self-developed hand-held 3D laser scanner and an efficient HT-ICP point cloud registration algorithm. Opt. Laser Technol. 45, 414–423 (2013)

  8. 8.

    Cheng, Y., Jafari, M.: Vision-based online process control in manufacturing applications. IEEE Trans. Autom. Sci. Eng. 5(1), 140–153 (2008). https://doi.org/10.1109/TASE.2007.912058

  9. 9.

    Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

  10. 10.

    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 303–312. ACM, New York, NY, USA (1996). https://doi.org/10.1145/237170.237269. https://dl.acm.org/citation.cfm?id=237269

  11. 11.

    Daniels II, J., Ochotta, T., Ha, L.K., Silva, C.T.: Spline-based feature curves from point-sampled geometry. Vis. Comput. 24(6), 449–462 (2008). https://doi.org/10.1007/s00371-008-0223-2

  12. 12.

    Diez, Y., Mart, J., Salvi, J.: Hierarchical normal space sampling to speed up point cloud coarse matching. Pattern Recognit. Lett. 33(16), 2127–2133 (2012). https://doi.org/10.1016/j.patrec.2012.07.006

  13. 13.

    Du, S., Zheng, N., Ying, S., Liu, J.: Affine iterative closest point algorithm for point set registration. Pattern Recognit. Lett. 31(9), 791–799 (2010)

  14. 14.

    Du, S., Liu, J., Zhang, C., Zhu, J., Li, K.: Probability iterative closest point algorithm for m-D point set registration with noise. Neurocomputing 157, 187–198 (2015). https://doi.org/10.1016/j.neucom.2015.01.019

  15. 15.

    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

  16. 16.

    Grant, D., Bethel, J., Crawford, M.: Point-to-plane registration of terrestrial laser scans. ISPRS J. Photogramm. Remote Sens. 72, 16–26 (2012)

  17. 17.

    Greenspan, M., Yurick, M.: Approximate k-d tree search for efficient ICP. In: 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. In: Proceedings Fourth International Conference on, pp. 442–448 (2003). https://doi.org/10.1109/IM.2003.1240280

  18. 18.

    Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: 3D object recognition in cluttered scenes with local surface features: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014). https://doi.org/10.1109/TPAMI.2014.2316828

  19. 19.

    Guo, H., Zhu, D., Mordohai, P.: Correspondence estimation for non-rigid point clouds with automatic part discovery. Vis. Comput. 32(12), 1511–1524 (2016). https://doi.org/10.1007/s00371-015-1136-5

  20. 20.

    Guo, X., Xiao, J., Wang, Y.: A survey on algorithms of hole filling in 3D surface reconstruction. Vis. Comput. 34(1), 93–103 (2018). https://doi.org/10.1007/s00371-016-1316-y

  21. 21.

    Hazzat, S.E., Merras, M., Akkad, N.E., Saaidi, A., Satori, K.: 3D reconstruction system based on incremental structure from motion using a camera with varying parameters. Vis. Comput. 34(10), 1443–1460 (2018). https://doi.org/10.1007/s00371-017-1451-0

  22. 22.

    He, B., Lin, Z., Li, Y.: An automatic registration algorithm for the scattered point clouds based on the curvature feature. Opt. Laser Technol. 46, 53–60 (2013)

  23. 23.

    Hu, S., Chen, X., Tong, X.: Point sets joint registration and co-segmentation. Vis. Comput. (2018). https://doi.org/10.1007/s00371-018-1578-7

  24. 24.

    Huang, J., You, S.: Point cloud matching based on 3D self-similarity. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 41–48 (2012). https://doi.org/10.1109/CVPRW.2012.6238913

  25. 25.

    Jani, A., Savsani, V., Pandy, A.: 3D affine registration using teaching-learning based optimization. 3D Res 4(3), 1–6 (2013)

  26. 26.

    Jiang, J., Cheng, J., Chen, X.: Registration for 3-D point cloud using angular-invariant feature. Neurocomputing 72(16–18), 3839–3844 (2009). https://doi.org/10.1016/j.neucom.2009.05.013. (Financial Engineering Computational and Ambient Intelligence (IWANN 2007))

  27. 27.

    Li, X., Li, W., Jiang, H., Zhao, H.: Automatic evaluation of machining allowance of precision castings based on plane features from 3D point cloud. Comput. Ind. 64(9), 1129–1137 (2013)

  28. 28.

    Liu, J., Ding, H., Shahroudy, A., Duan, L., Jiang, X., Wang, G., Kot Chichung, A.: Feature boosting network for 3D pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1 (2019). https://doi.org/10.1109/TPAMI.2019.2894422

  29. 29.

    Magnusson, M.: The Three-Dimensional Normal-distributions Transform: An Efficient Representation for Registration, Surface Analysis, and Loop Detection. Doctoral Thesis, Örebro University (2009)

  30. 30.

    Mavridis, P., Andreadis, A., Papaioannou, G.: Efficient sparse icp. Comput. Aided Geom. Des. 35–36, 16–26 (2015). https://doi.org/10.1016/j.cagd.2015.03.022. (Geometric Modeling and Processing 2015)

  31. 31.

    McKinnon, C., Marshall, J.: Automatic identification of large fragments in a pile of broken rock using a time-of-flight camera. IEEE Trans. Autom. Sci. Eng. 11(3), 935–942 (2014). https://doi.org/10.1109/TASE.2014.2308011

  32. 32.

    Mellado, N., Aiger, D., Mitra, N.J.: Super 4PCS fast global pointcloud registration via smart indexing. Comput. Graph. Forum 33(5), 205–215 (2014). https://doi.org/10.1111/cgf.12446

  33. 33.

    Meng, Y., Zhang, H.: Registration of point clouds using sample-sphere and adaptive distance restriction. Vis. Comput. 27(6), 543–553 (2011). https://doi.org/10.1007/s00371-011-0580-0

  34. 34.

    Nozaki, T., Mizoguchi, T., Saito, Y., Yashiro, D., Ohnishi, K.: Recognition of grasping motion based on modal space haptic information using DP pattern-matching algorithm. IEEE Trans. Ind. Inf. 9(4), 2043–2051 (2013). https://doi.org/10.1109/TII.2012.2232934

  35. 35.

    Park, S.Y., Baek, J., Moon, J.: Hand-held 3D scanning based on coarse and fine registration of multiple range images. Mach. Vis. Appl. 22(3), 563–579 (2011). https://doi.org/10.1007/s00138-010-0248-1

  36. 36.

    Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust icp for minimizing fractional RMSD. In: Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), pp. 427–434 (2007). https://doi.org/10.1109/3DIM.2007.39

  37. 37.

    Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85. Honolulu, HI, USA (2017). https://doi.org/10.1109/CVPR.2017.16

  38. 38.

    Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, 2009. ICRA ’09., pp. 3212–3217. Kobe, Japan (2009). https://doi.org/10.1109/ROBOT.2009.5152473

  39. 39.

    Rusu, R., Cousins, S.: 3D is here: Point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011). https://doi.org/10.1109/ICRA.2011.5980567

  40. 40.

    Sharp, G.C., Lee, S.W., Wehe, D.K.: Multiview registration of 3D scenes by minimizing error between coordinate frames. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1037–1050 (2004). https://doi.org/10.1109/TPAMI.2004.49

  41. 41.

    Shi, J., Sun, Z., Bai, S.: 3D reconstruction framework via combining one 3D scanner and multiple stereo trackers. Vis. Comput. 34(3), 377–389 (2018). https://doi.org/10.1007/s00371-016-1339-4

  42. 42.

    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1994, pp. 311–318. ACM, New York, NY, USA (1994). https://doi.org/10.1145/192161.192241. https://dl.acm.org/citation.cfm?id=192241

  43. 43.

    Xie, Z., Xu, S., Li, X.: A high-accuracy method for fine registration of overlapping point clouds. Image Vis. Comput. 28(4), 563–570 (2010)

  44. 44.

    Xu, G., Du, S., Xue, J.: Precise 2D point set registration using iterative closest algorithm and correntropy. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4627–4631 (2016). https://doi.org/10.1109/IJCNN.2016.7727806

  45. 45.

    Xu, Y., Mao, Y., Tong, X., Tan, H., Griffin, W., Kannan, B., DeRose, L.: Robotic handling of surgical instruments in a cluttered tray. IEEE Trans. Autom. Sci. Eng. 12(2), 775–780 (2015). https://doi.org/10.1109/TASE.2015.2396041

  46. 46.

    Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2241–2254 (2016). https://doi.org/10.1109/TPAMI.2015.2513405

  47. 47.

    Ying, S., Peng, J., Du, S., Qiao, H.: A scale stretch method based on ICP for 3D data registration. IEEE Trans. Autom. Sci. Eng. 6(3), 559–565 (2009). https://doi.org/10.1109/TASE.2009.2021337

  48. 48.

    Zhang, X., Hu, S., Chen, D., Li, X.: Fast covariance matching with fuzzy genetic algorithm. IEEE Trans. Ind. Inf. 8(1), 148–157 (2012). https://doi.org/10.1109/TII.2011.2172453

  49. 49.

    Zhang, R., Li, G., Li, M., Wang, L.: Fusion of images and point clouds for the semantic segmentation of large-scale 3D scenes based on deep learning. ISPRS J. Photogramm. Remote Sens. 143, 85–96 (2018). https://doi.org/10.1016/j.isprsjprs.2018.04.022. (Theme Issue “Point Cloud Processing”)

  50. 50.

    Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4490–4499. Salt Lake City, UT, USA (2018). https://doi.org/10.1109/CVPR.2018.00472

Download references

Acknowledgements

This research was supported by Industrial Technology Research Institute, Taiwan, ROC under Grant D301AA4111-FY103.

Funding

This study was funded by Industrial Technology Research Institute, Taiwan, ROC (D301AA4111-FY103).

Author information

Correspondence to Wen-Chung Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, W., Wu, C. Candidate-based matching of 3-D point clouds with axially switching pose estimation. Vis Comput 36, 593–607 (2020). https://doi.org/10.1007/s00371-019-01642-5

Download citation

Keywords

  • Computed closer point (CCP)
  • Iterative closest point (ICP)
  • KD-tree
  • Point cloud
  • 3-D registration