Part-based visual tracking with spatially regularized correlation filters
Abstract
Discriminative Correlation Filters (DCFs) have demonstrated excellent performance in visual object tracking. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier on image patches; unfortunately, this also introduces unwanted boundary effects. Recently, Spatially Regularized Discriminative Correlation Filters (SRDCFs) were proposed to resolve this issue by introducing penalization weights to the filter coefficients, thereby efficiently reducing boundary effects by assigning higher weights to the background. However, due to the variable target scale, defining the penalization ratio is non trivial; thus, it is possible to penalize the image content while also penalizing the background. In this paper, we investigate SRDCFs and present a novel and efficient part-based tracking framework by exploiting multiple SRDCFs. Compared with existing trackers, the proposed method has several advantages. (1) We define multiple correlation filters to extract features within the range of the object, thereby alleviating the boundary effect problem and avoiding penalization of the target content. (2) Through the combination of cyclic object shifts with penalized filters to build part-based object trackers, there is no need to divide training samples into parts. (3) Comprehensive comparisons demonstrate that our approach achieves a performance equivalent to that of the baseline SRDCF tracker on a set of benchmark datasets, namely, OTB2013, OTB2015 and VOT2017. In addition, compared with other state-of-the-art trackers, our approach demonstrates superior performance.
Keywords
Correlation filter tracking Discriminative Correlation Filter Part-based tracking Spatially regularized filterNotes
Acknowledgements
This study was funded by the National Natural Science Foundation of China (Grant nos. 61702350 and 61472289) and the Open Project Program of State Key Laboratory of Digital Manufacturing Equipment and Technology at HUST (Grant no. DMETKF2017016).
References
- 1.Bai, B., Zhong, B., Ouyang, G., Wang, P., Liu, X., Chen, Z., Wang, C.: Kernel correlation filters for visual tracking with adaptive fusion of heterogeneous cues. Neurocomputing 286, 109–120 (2018)Google Scholar
- 2.Bibi, A., Mueller, M., Ghanem, B.: Target response adaptation for correlation filter tracking. In: European Conference on Computer Vision, pp. 419–433. Springer (2016)Google Scholar
- 3.Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2544–2550. IEEE (2010)Google Scholar
- 4.Cehovin, L., Kristan, M., Leonardis, A.: Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 941–953 (2013)Google Scholar
- 5.Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
- 6.Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M,: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4310–4318 (2015)Google Scholar
- 7.Fan, H., Xiang, J., Xu, J., Liao, H.: Part-based visual tracking via online weighted p–n learning. Sci. World J. 2014, 402185 (2014)Google Scholar
- 8.Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)Google Scholar
- 9.Gao, J., Ling, H., Hu, W., Xing, J.: Transfer learning based visual tracking with Gaussian processes regression. In: European Conference on Computer Vision, pp. 188–203. Springer (2014)Google Scholar
- 10.Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects. Comput. Vis. Image Underst. 117(10), 1245–1256 (2013)Google Scholar
- 11.Guan, H., Cheng, B.: How do deep convolutional features affect tracking performance: an experimental study. Visual Comput. 34(12), 1701–1711 (2018)Google Scholar
- 12.Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S.L., Torr, P.H.S.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016)Google Scholar
- 13.Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: European Conference on Computer Vision, pp. 702–715. Springer (2012)Google Scholar
- 14.Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)Google Scholar
- 15.Hu, X., Yang, Y.: Faster spatially regularized correlation filters for visual tracking. arXiv preprint. arXiv:1706.00140 (2017)
- 16.Hwang, J.P., Baek, J., Choi, B., Kim, E.: A novel part-based approach to mean-shift algorithm for visual tracking. Int. J. Control Autom. Syst. 13(2), 443–453 (2015)Google Scholar
- 17.Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)Google Scholar
- 18.Kiani Galoogahi, H., Sim, T., Lucey, S.: Correlation filters with limited boundaries. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4630–4638 (2015)Google Scholar
- 19.Kristan, M., Eldesokey, A., Xing, Y., Fan, Y., Zhu, Z., Zhang, Z., He, Z., Fernandez, G., Garciamartin, A., Muhic, A.: The visual object tracking VOT2017 challenge results. In: IEEE International Conference on Computer Vision Workshop, pp. 1949–1972 (2017)Google Scholar
- 20.Kwon, J., Lee, K.M.: Visual tracking decomposition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1269–1276. IEEE (2010)Google Scholar
- 21.Kwon, J., Lee, K.M.: Highly nonrigid object tracking via patch-based dynamic appearance modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2427–2441 (2013)MathSciNetGoogle Scholar
- 22.Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: ECCV Workshops, no. 2, pp. 254–265 (2014)Google Scholar
- 23.Li, Y., Zhu, J., Hoi, S.C.H.: Reliable patch trackers: robust visual tracking by exploiting reliable patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 353–361 (2015)Google Scholar
- 24.Li, Z., He, S., Hashem, M.: Robust object tracking via multi-feature adaptive fusion based on stability: contrast analysis. Visual Comput. 31(10), 1319–1337 (2015)Google Scholar
- 25.Li, Z., Xiaoping, Y., Li, P., Hashem, M.: Moving object tracking based on multi-independent features distribution fields with comprehensive spatial feature similarity. Visual Comput. 31(12), 1633–1651 (2015)Google Scholar
- 26.Liu, B., Huang, J., Kulikowski, C., Yang, L.: Robust visual tracking using local sparse appearance model and k-selection. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2968–2981 (2013)Google Scholar
- 27.Liu, S., Zhang, T., Cao, X., Xu, C.: Structural correlation filter for robust visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4312–4320 (2016)Google Scholar
- 28.Liu, T., Wang, G., Yang, Q.: Real-time part-based visual tracking via adaptive correlation filters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4902–4912 (2015)Google Scholar
- 29.Ma, C., Yang, X., Zhang, C., Yang, M.-H.: Long-term correlation tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5388–5396 (2015)Google Scholar
- 30.Matthews, L., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 810–815 (2004)Google Scholar
- 31.Mbelwa, J.T., Zhao, Q., Lu, Y., Liu, H., Wang, F., Mbise, M.: Objectness-based smoothing stochastic sampling and coherence approximate nearest neighbor for visual tracking. Visual Comput. 1–14 (2018). https://doi.org/10.1007/s00371-018-1470-5
- 32.Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: Computer Vision and Pattern Recognition, pp. 1177–1184 (2011)Google Scholar
- 33.Quan, W., Chen, J.X., Yu, N.: Robust object tracking using enhanced random ferns. Visual Comput. 30(4), 351–358 (2014)Google Scholar
- 34.Quan, W., Jiang, Y., Zhang, J., Chen, J.X.: Robust object tracking with active context learning. Visual Comput. 31(10), 1307–1318 (2015)Google Scholar
- 35.Zhigang, T., Xie, W., Qin, Q., Poppe, R., Veltkamp, R.C., Li, B., Yuan, J.: Multi-stream CNN: learning representations based on human-related regions for action recognition. Pattern Recognit. 79, 32–43 (2018)Google Scholar
- 36.Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.S.: End-to-end representation learning for correlation filter based tracking. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5000–5008. IEEE (2017)Google Scholar
- 37.Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)MathSciNetzbMATHGoogle Scholar
- 38.Wang, Q., Gao, J., Xing, J., Zhang, M., Hu, W.: Dcfnet: discriminant correlation filters network for visual tracking. arXiv preprintarXiv:1704.04057 (2017)Google Scholar
- 39.Wang, Z., Yoon, S., Xie, S.J., Lu, Y., Park, D.S.: Visual tracking with semi-supervised online weighted multiple instance learning. Visual Comput. 32(3), 307–320 (2016)Google Scholar
- 40.Wu, Y., Lim, J., Yang, M.-H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)Google Scholar
- 41.Yi, W., Lim, J., Yang, M.-H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)Google Scholar
- 42.Yunxia, W., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Visual Comput. 31(4), 471–484 (2015)Google Scholar
- 43.Yang, M., Yuan, J., Wu, Y.: Spatial selection for attentional visual tracking. In: CVPR’07. IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8. IEEE (2007)Google Scholar
- 44.Zhan, J., Zhuo, S., Hefeng, W., Luo, X.: Robust tracking via discriminative sparse feature selection. Visual Comput. 31(5), 575–588 (2015)Google Scholar
- 45.Zhang, H., Liu, G.: Coupled-layer based visual tracking via adaptive kernelized correlation filters. Visual Comput. 34(1), 41–54 (2018)MathSciNetGoogle Scholar
- 46.Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: Computer Vision and Pattern Recognition, pp. 2042–2049 (2012)Google Scholar
- 47.Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Low-Rank Sparse Learning for Robust Visual Tracking. Springer, Berlin (2012)zbMATHGoogle Scholar
- 48.Zhang, T., Jia, K., Xu, C., Ma, Y., Ahuja, N.: Partial occlusion handling for visual tracking via robust part matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1258–1265 (2014)Google Scholar
- 49.Zhao, L., Zhao, Q., Liu, H., Lv, P., Dongbing, G.: Structural sparse representation-based semi-supervised learning and edge detection proposal for visual tracking. Visual Comput. 33(9), 1169–1184 (2017)Google Scholar
- 50.Zhong, B., Zhang, J., Wang, P., Du, J., Chen, D.: Jointly feature learning and selection for robust tracking via a gating mechanism. PLOS ONE 11(8), e0161808 (2016)Google Scholar
- 51.Zhong, B., Chen, Y., Shen, Y., Chen, Y., Cui, Z., Ji, R., Yuan, X., Chen, D., Chen, W.: Robust tracking via patch-based appearance model and local background estimation. Neurocomputing 123, 344–353 (2014)Google Scholar
- 52.Zhong, B., Yao, H., Chen, S., Ji, R., Chin, T.J., Wang, H.: Visual tracking via weakly supervised learning from multiple imperfect oracles. Pattern Recognit. 47(3), 1395–1410 (2014)zbMATHGoogle Scholar
- 53.Zhong, W., Lu, H., Yang, M.-H.: Robust object tracking via sparsity-based collaborative model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1838–1845. IEEE (2012)Google Scholar