Four points: one-pass geometrical camera calibration algorithm

  • H. K. ArdakaniEmail author
  • A. Mousavinia
  • Farzad Safaei
Original Article


Conventional geometrical camera calibration algorithms are usually based on running some iterative algorithms on test images obtained carefully from reference objects with precisely known pattern. Providing these test images and running the iterative algorithms are often time-consuming and sometimes costly. In addition, they are usually very sensitive to image distortions. To overcome these problems, an efficient and practical camera calibration method using a single rectangular reference object is proposed. The reference object can be as simple as an A4-size paper placed on a table. Using the coordinate of four corner points of reference image, generate eight equations. This paper first describes an analytical method to solve the equations and then provides a step-by-step algorithm. The proposed algorithm is evaluated using simulated images generated with both Autodesk 3ds Max software and Microsoft Camera Calibration data set. The results show that the accuracy of the proposed method is very close to the best ones available, while its sensitivity to distortion and computational load is the least. In addition, the required reference object is the simplest one.


Camera calibration Single image Machine vision Camera parameters 



  1. 1.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge Univ. Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Shi, J., Sun, Z., Bai, S.: 3D reconstruction framework via combining one 3D scanner and multiple stereo trackers. Vis. Comput. 34(3), 377–389 (2018)CrossRefGoogle Scholar
  3. 3.
    Lu, F., Zhou, B., Zhang, Y., et al.: Real-time 3D scene reconstruction with dynamically moving object using a single depth camera. Vis. Comput. 34(6–8), 753–763 (2018)CrossRefGoogle Scholar
  4. 4.
    El Hazzat, S., Merras, M., El Akkad, N., et al.: 3D reconstruction system based on incremental structure from motion using a camera with varying parameters. Vis. Comput. 34(10), 1443–1460 (2017)Google Scholar
  5. 5.
    Abdel-Aziz, Y.I., Karara, H.M., Hauck, M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Photogramm. Eng. Remote Sens. 81(2), 103–107 (2015)CrossRefGoogle Scholar
  6. 6.
    Xu, G., et al.: Three degrees of freedom global calibration method for measurement systems with binocular vision. J. Opt. Soc. Korea 20(1), 107–117 (2016)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  8. 8.
    Frosio, I., Turrini, C., Alzati, A.: Camera re-calibration after zooming based on sets of conics. Vis. Comput. 32(5), 663–674 (2016)CrossRefGoogle Scholar
  9. 9.
    Liu, M., et al.: Generic precise augmented reality guiding system and its calibration method based on 3d virtual model. Opt. Express 24(11), 12026–12042 (2016)CrossRefGoogle Scholar
  10. 10.
    Xu, G., Zhang, X., Su, J., Li, X., Zheng, A.: Solution approach of a laser plane based on Plücker matrices of the projective lines on a flexible 2D target. Appl. Optics 55(10), 2653–2656 (2016)CrossRefGoogle Scholar
  11. 11.
    Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8(2), 123–151 (1992)CrossRefGoogle Scholar
  12. 12.
    Triggs, B.: Auto calibration and the absolute quadric. In: Proc. IEEE Conf. Computer Vis. Pattern Recognit., pp. 609–614 (1997)Google Scholar
  13. 13.
    Hemayed, E.E.: A survey of camera self-calibration. In: Proc. IEEE Conf. Adv. Video Signal Based Surveillance, pp. 351–357 (2003)Google Scholar
  14. 14.
    Ackermann, H., Kanatani, K.: Robust and efficient 3-D reconstruction by self-calibration. In: Proc. IAPR Conf. Mach Vis. Applications, pp. 178–181 (2007)Google Scholar
  15. 15.
    Zhang, Z.: Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 892–899 (2004)CrossRefGoogle Scholar
  16. 16.
    Hammarstedt, P., Sturm, P., Heyden, A.: Degenerate cases and closed-form solutions for camera calibration with one-dimensional objects. In: Proc. IEEE Int. Conf. Comput. Vis., vol. 1, pp. 317–324 (2005)Google Scholar
  17. 17.
    Wu, F.C., Hu, Z.Y., Zhu, H.J.: Camera calibration with moving one-dimensional objects. Pattern Recognit. 38(5), 755–765 (2005)CrossRefGoogle Scholar
  18. 18.
    Qi, F., Li, Q., Luo, Y., Hu, D.: Constraints on general motions for camera calibration with one-dimensional objects. Pattern Recognit. 40(6), 1785–1792 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, L., Wu, F.C., Hu, Z.Y.: Multi-camera calibration with one-dimensional object under general motions. In: Proc. IEEE Int. Conf. Comput. Vis., pp. 1–7 (2007)Google Scholar
  20. 20.
    de Francca, J.A., Stemmer, M.R., Francca, M.B.D.M., Alves, E.G.: Revisiting Zhang’s 1D calibration algorithm. Pattern Recognit. 43(3), 1180–1187 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, L., Duan, F., Liang, C.: A global optimal algorithm for camera calibration with one-dimensional objects. In: Proc. 14th Int. Conf. Human-Comput. Interact., pp. 660–669 (2011)Google Scholar
  22. 22.
    Miyagawa, I., Arai, H., Koike, H.: Simple camera calibration from a single image using five points on two orthogonal 1-D objects. IEEE Trans. Image Process. 19(6), 1528–1538 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shi, K., Dong, Q., Wu, F.: Weighted similarity-invariant linear algorithm for camera calibration with rotating 1-D objects. IEEE Trans. Image Process. 21(8), 3806–3812 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhao, Z., Liu, Y., Zhang, Z.: Camera calibration with three noncollinear points under special motions. IEEE Trans. Image Process. 17(12), 2393–2402 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Cao, X., Foroosh, H.: Camera calibration using symmetric objects. IEEE Trans. Image Process. 15(11), 3614–3619 (2006)CrossRefGoogle Scholar
  26. 26.
    Lv, F., Zhao, T., Nevatia, R.: Camera calibration from video of a walking human. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1513–1518 (2006)CrossRefGoogle Scholar
  27. 27.
    Caprile, B., Torre, V.: Using vanishing points for camera calibration. Int. J. Comput. Vis. 4(2), 127–139 (1990)CrossRefGoogle Scholar
  28. 28.
    Beardsley, P., Murray, D.: Camera calibration using vanishing points. In: Proc. Brit. Mach. Vis. Conf., pp 416–425 (1992)Google Scholar
  29. 29.
    Cipolla, R., Drummond, T., Robertson, D.: Camera calibration from vanishing points in images of architectural scenes. In: Proc. Brit. Mach. Vis. Conf., vol. 2, pp 382–391 (1999)Google Scholar
  30. 30.
    Grammatikopoulos, L., Karras, G., Petsa, E., Kalisperakis, I.: An automatic approach for camera calibration from vanishing points. ISPRS J. Photogramm. Remote Sens. 62(1), 64–76 (2007)CrossRefGoogle Scholar
  31. 31.
    Wang, G., Tsui, H.T., Hu, Z., Wu, F.: Camera calibration and 3-D reconstruction from a single view based on scene constraints. Image Vis. Comput. 23(3), 311–323 (2005)CrossRefGoogle Scholar
  32. 32.
    Babaguchi, N., Kawai, Y., Kitahashi, T.: Event based indexing of broadcasted sports video by intermodal collaboration. IEEE Trans. Multimed. 4(1), 68–75 (2002)CrossRefGoogle Scholar
  33. 33.
    Xu, C., Wang, J., Lu, H., Zhang, Y.: A novel framework for semantic annotation and personalized retrieval of sports video. IEEE Trans. Multimed. 10(3), 325–329 (2008)Google Scholar
  34. 34.
    Zhu, G., Xu, C., Huang, Q., Rui, Y., Jiang, S., Gao, W., Yao, H.: Event tactic analysis based on broadcast sports video. IEEE Trans. Multimed. 11(1), 49–67 (2009)CrossRefGoogle Scholar
  35. 35.
    Hu, M.-C., Chang, M.-H., Wu, J.-L., Chi, L.: Robust camera calibration and player tracking in broadcast basketball video. IEEE Trans. Multimed. 13(2), 266–279 (2011)CrossRefGoogle Scholar
  36. 36.
    Chen, H.-T., Tsai, W.-J., Lee, S.-Y., Yu, J.-Y.: Ball tracking and 3D trajectory approximation with applications to tactics analysis from single-camera volleyball sequences. Multimed. Tools Appl. 60(3), 641–667 (2012)CrossRefGoogle Scholar
  37. 37.
    Inamoto, N., Saito, H.: Free viewpoint video synthesis and presentation of sporting events for mixed reality entertainment. In: Proc. ACM SIGCHI Int. Conf. Adv. Comput. Entertainment Technol., pp 42–50 (2004)Google Scholar
  38. 38.
    Chen, H.-T.: Geometry-based camera calibration using five-point correspondences from a single image. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2555–2566 (2017)CrossRefGoogle Scholar
  39. 39.
    Avinash, N., Murali, S.: Perspective geometry based single image camera calibration. J. Math. Imaging Vis. 30(3), 221–230 (2007)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lee, J.-H.: Camera calibration from a single image based on coupled line cameras and rectangle constraint. In: Int. Conf. on Pattern Recognit. (2012)Google Scholar
  41. 41.
    Bajramovic, F., Denzler, J.: Global uncertainty-based selection of relative poses for multi camera calibration. In: Proc. Brit. Mach. Vis. Conf., vol. 2, pp. 382–391 (2008)Google Scholar
  42. 42.
    Kang, S.B., Zhang, Z.:. A flexible new technique for camera calibration, Microsoft Camera Calibration data set. Accessed 1999

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering FacultyK.N.Toosi University of TechnologyTehranIran
  2. 2.Faculty of Engineering and Information SciencesUniversity of WollongongWollongongAustralia

Personalised recommendations