Advertisement

The Visual Computer

, Volume 35, Issue 12, pp 1741–1753 | Cite as

An efficient FLIP and shape matching coupled method for fluid–solid and two-phase fluid simulations

  • Yang Gao
  • Shuai LiEmail author
  • Hong Qin
  • Yinghao Xu
  • Aimin Hao
Original Article
  • 190 Downloads

Abstract

Solid dynamic deformation and multiphase fluid coupling driven by numerical simulation have manifested their significance for many graphics applications during the past 2 decades. For example, the fluid implicit particle (FLIP) method and shape matching constraint based on position-based dynamics (PBD) have demonstrated their unique graphics strength in fluid and solid animation, respectively. In this paper, we propose a novel integrated approach supporting the seamless unification of FLIP and dynamic shape matching. We devise new algorithms to tackle existing difficulties when handling new phenomena such as high-fidelity fluid–solid interactions, solid deformations, melting and immiscible fluid coupling. The key innovation of this paper is a unified Lagrangian framework that seamlessly blends FLIP- and PBD-based shape matching constraints toward the natural yet flexible coupling between fluid and deformable solid. Within our integrated framework, it enables many complicated fluid–solid phenomena with ease. We conduct various kinds of experiments, all the results demonstrate the advantages of our unified hybrid approach toward visual fidelity, computational efficiency, numerical stability, and application versatility.

Keywords

FLIP Shape matching Position-based dynamics Solid deformation Immiscible fluid coupling 

Notes

Acknowledgements

This research is supported in part by National Natural Science Foundation of China (Nos. 61672077 and 61532002), National Key R&D Program of China (No. 2017YFF0106407), Applied Basic Research Program of Qingdao (No. 161013xx), National Science Foundation of USA (Nos. IIS-0949467, IIS-1047715, and IIS-1049448) and the Academic Excellence Foundation of BUAA for Ph.D. Students.

Supplementary material

Supplementary material 1 (mp4 116151 KB)

References

  1. 1.
    Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31(4), 62:1–62:8 (2012)CrossRefGoogle Scholar
  2. 2.
    Akinci, N., Cornelis, J., Akinci, G., Teschner, M.: Coupling elastic solids with smoothed particle hydrodynamics fluids. Comput. Anim. Virtual Worlds 24(3–4), 195–203 (2013)CrossRefGoogle Scholar
  3. 3.
    Allard, J., Courtecuisse, H., Faure, F.: Implicit FEM and fluid coupling on GPU for interactive multiphysics simulation. ACM SIGGRAPH 2011 Talks, pp. 52:1–52:1 (2011)Google Scholar
  4. 4.
    Ando, R., Thurey, N., Tsuruno, R.: Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comput. Graph. 18(8), 1202–1214 (2012)CrossRefGoogle Scholar
  5. 5.
    Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid–fluid coupling. ACM Trans. Graph. 26(3), 100 (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bender, J., Müller, M., Macklin, M.: Position-based simulation methods in computer graphics. In: Tutorial Proceedings of Eurographics (2015)Google Scholar
  7. 7.
    Bender, J., Dan, K., Charrier, P., Weber, D.: Position-based simulation of continuous materials. Comput. Graph. 44, 1–10 (2014)CrossRefGoogle Scholar
  8. 8.
    Bender, J., Müller, M., Otaduy, M.A., Teschner, M., Macklin, M.: A survey on positionbased simulation methods in computer graphics. Comput. Graph. Forum 33(6), 228251 (2014)CrossRefGoogle Scholar
  9. 9.
    Boyd, L., Bridson, R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graph. 31(2), 16:1–16:12 (2012)CrossRefGoogle Scholar
  10. 10.
    Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23(3), 377–384 (2004)CrossRefGoogle Scholar
  11. 11.
    Clausen, P., Wicke, M., Shewchuk, J.R., O’brien, J.F.: Simulating liquids and solid–liquid interactions with lagrangian meshes. ACM Trans. Graph. 32(2), 17 (2013)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cornelis, J., Bender, J., Gissler, C., Ihmsen, M., Teschner, M.: An optimized source term formulation for incompressible SPH. Vis. Comput (2018).  https://doi.org/10.1007/s00371-018-1488-8 CrossRefGoogle Scholar
  13. 13.
    Cornelis, J., Ihmsen, M., Peer, A., Teschner, M.: IISPH–FLIP for incompressible fluids. Comput. Graph. Forum 33(2), 255–262 (2014)CrossRefGoogle Scholar
  14. 14.
    Ferstl, F., Ando, R., Wojtan, C., Westermann, R., Thuerey, N.: Narrow band flip for liquid simulations. Int. J. Numer. Methods Fluids 35(2), 225–232 (2016)Google Scholar
  15. 15.
    Gagnon, J., Paquette, E.: Procedural and interactive icicle modeling. Vis. Comput. 27(6–8), 451–461 (2011)CrossRefGoogle Scholar
  16. 16.
    Gao, Y., Li, S., Qin, H., Hao, A.: A novel fluid-solid coupling framework integrating flip and shape matching methods. In: Proceedings of the Computer Graphics International Conference, p. 11. ACM (2017)Google Scholar
  17. 17.
    Gao, Y., Li, S., Yang, L., Qin, H., Hao, A.: An efficient heat-based model for solid–liquid–gas phase transition and dynamic interaction. Graph. Models 94, 14–24 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gerszewski, D., Bargteil, A.W.: Physics-based animation of large-scale splashing liquids. ACM Trans. Graph. 32(6), 185:1–185:6 (2013)CrossRefGoogle Scholar
  19. 19.
    Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: SPH fluids in computer graphics. Eurographics 2014-State of the Art Reports, pp. 21–42 (2014)Google Scholar
  20. 20.
    Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutre, P., Gross, M.: A unified Lagrangian approach to solid–fluid animation, vol. 2005, pp. 125–148 (2005)Google Scholar
  21. 21.
    Lenaerts, T., Dutr, P.: Mixing fluids and granular materials. Comput. Graph. Forum 28(2), 213–218 (2009)CrossRefGoogle Scholar
  22. 22.
    Lenaerts, T., Adams, B., Dutr, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27(3), 15–19 (2008)CrossRefGoogle Scholar
  23. 23.
    Lii, S.Y., Wong, S.K.: Ice melting simulation with water flow handling. Vis. Comput. 30(5), 531–538 (2014)CrossRefGoogle Scholar
  24. 24.
    Ller, M., Chentanez, N., Kim, T.Y., Macklin, M.: Strain based dynamics. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium Computer Animation, pp. 149–157 (2014)Google Scholar
  25. 25.
    Macklin, M., Müller, M., Chentanez, N.: Xpbd: Position-based simulation of compliant constrained dynamics (2016)Google Scholar
  26. 26.
    Macklin, M.: Position based fluids. ACM Trans. Graph. 32(32), 104:1–104:12 (2013)zbMATHGoogle Scholar
  27. 27.
    Macklin, M., Ller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. 33(4), 1–12 (2014)CrossRefGoogle Scholar
  28. 28.
    Martinek, M., Grosso, R., Greiner, G.: Interactive partial 3d shape matching with geometric distance optimization. Vis. Comput. 31(2), 223–233 (2015)CrossRefGoogle Scholar
  29. 29.
    Misztal, M.K., Erleben, K., Bargteil, A., Fursund, J., Christensen, B., Bærentzen, J.A., Bridson, R.: Multiphase flow of immiscible fluids on unstructured moving meshes, pp. 97–106. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2012)Google Scholar
  30. 30.
    Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)CrossRefGoogle Scholar
  31. 31.
    Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)CrossRefGoogle Scholar
  32. 32.
    Peer, A., Teschner, M.: Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE Trans. Vis. Comput. Graph. 23, 2656–2662 (2016)CrossRefGoogle Scholar
  33. 33.
    Selino, A., Jones, M.: Large and small eddies matter: animating trees in wind using coarse fluid simulation and synthetic turbulence. Comput. Graph. Forum 32(1), 75–84 (2013)CrossRefGoogle Scholar
  34. 34.
    Shao, X., Zhou, Z., MagnenatThalmann, N., Wu, W.: Stable and fast fluid–solid coupling for incompressible SPH. Comput. Graph. Forum 34(1), 191–204 (2015)CrossRefGoogle Scholar
  35. 35.
    Tournier, M., Nesme, M., Gilles, B.: Stable constrained dynamics. ACM Trans. Graph. 34(4), 1–10 (2015)zbMATHCrossRefGoogle Scholar
  36. 36.
    Wong, T.H., Leach, G., Zambetta, F.: An adaptive octree grid for GPU-based collision detection of deformable objects. Vis. Comput. 30(6–8), 729–738 (2014)CrossRefGoogle Scholar
  37. 37.
    Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. 35(4), 79 (2016)Google Scholar
  38. 38.
    Yang, L., Li, S., Hao, A., Qin, H.: Realtime two-way coupling of meshless fluids and nonlinear fem. Comput. Graph. Forum 31(7), 2037–2046 (2012)CrossRefGoogle Scholar
  39. 39.
    Yang, L., Li, S., Hao, A., Qin, H.: Hybrid particle-grid modeling for multi-scale droplet/spray simulation. Comput. Graph. Forum 33(7), 199–208 (2014)CrossRefGoogle Scholar
  40. 40.
    Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Gao
    • 1
  • Shuai Li
    • 2
    Email author
  • Hong Qin
    • 3
  • Yinghao Xu
    • 1
  • Aimin Hao
    • 1
  1. 1.State Key Laboratory of Virtual Reality Technology and SystemsBeihang UniversityBeijingChina
  2. 2.State Key Laboratory of Virtual Reality Technology and Systems, Beihang University Qingdao Research InstituteBeihang UniversityBeijingChina
  3. 3.Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations