Advertisement

The Visual Computer

, Volume 34, Issue 6–8, pp 863–873 | Cite as

Incremental Voronoi sets for instant stippling

  • Lei Ma
  • Yanyun Chen
  • Yinling Qian
  • Hanqiu Sun
Original Article
  • 148 Downloads

Abstract

This paper presents a fast digital stippling algorithm, which makes a fair balance on result quality and computational efficiency. The algorithm is based on precomputed blue noise point sets constructed by incremental Voronoi sets (IVS) and a real-time parallelized rejection strategy. The proposed technique is readily extended to generate multi-tone-level or multi-nib-size stippling results of increased pleasure visual impressions with smooth tone transition. The IVS can also be regressed to generate blue noise masks for digital halftoning.

Keywords

Real-time Stippling Multi-tones Voronoi 

Notes

Acknowledgements

This study is funded by UGC (Grant number 4055060), joint NSFC grants (no. 61379087, 61602183).

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest to this work.

Supplementary material

371_2018_1541_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (pdf 2699 KB)

Supplementary material 2 (mp4 23292 KB)

References

  1. 1.
    Ahmed, A., Guo, J., Yan, D.M., Franceschi, J.Y., Zhang, X., Deussen, O.: A simple push-pull algorithm for blue-noise sampling. IEEE Trans. Vis. Comput. Graph. 23(12), 2496–2508 (2017)CrossRefGoogle Scholar
  2. 2.
    Ahmed, A., Niese, T., Huang, H., Deussen, O.: An adaptive point sampler on a regular lattice. ACM Trans. Graph. 36(4), 4138:1–138:13 (2017)CrossRefGoogle Scholar
  3. 3.
    Ahmed, A., Perrier, H., Coeurjolly, D., Ostromoukhov, V., Guo, J., Yan, D., Huang, H., Deussen, O.: Low-discrepancy blue noise sampling. ACM Trans. Graph. 35(6), 247:1–247:13 (2016)CrossRefGoogle Scholar
  4. 4.
    Ahmed, A.G.M., Huang, H., Deussen, O.: AA patterns for point sets with controlled spectral properties. ACM Trans. Graph. 34(6), 212:1–212:8 (2015)CrossRefGoogle Scholar
  5. 5.
    Ascencio-Lopez, I., Meruvia-Pastor, O., Hidalgo-Silva, H.: Adaptive incremental stippling using the Poisson-disk distribution. J. Graph. GPU Game Tools 15(1), 29–47 (2010)CrossRefGoogle Scholar
  6. 6.
    Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: a variant of Lloyd’s method. ACM Trans. Graph. (Proc. SIGGRAPH) 28(6), 86:1–86:8 (2009)Google Scholar
  7. 7.
    Bayer, B.E.: An optimum method for two-level rendition of continuous-tone pictures. IEEE Int. Conf. Commun. 26, 11–15 (1973)Google Scholar
  8. 8.
    Chen, J., Ge, X., Wei, L.Y., Wang, B., Wang, Y., Wang, H., Fei, Y., Qian, K.L., Yong, J.H., Wang, W.: Bilateral blue noise sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32(6), 216:1–216:11 (2013)Google Scholar
  9. 9.
    Chen, R., Gotsman, C.: Parallel blue-noise sampling by constrained farthest point optimization. Comput. Graph. Forum (Proc. SGP) 31(5), 1775–1785 (2012)CrossRefGoogle Scholar
  10. 10.
    Chen, Z., Yuan, Z., Choi, Y.K., Liu, L., Wang, W.: Variational blue noise sampling. IEEE Trans. Vis. Comput. Graph. 18(10), 1784–1796 (2012)CrossRefGoogle Scholar
  11. 11.
    Cline, D., Jeschke, S., Razdan, A., White, K., Wonka, P.: Dart throwing on surfaces. Comput. Graph. Forum (Proc. EGSR) 28(4), 1217–1226 (2009)CrossRefGoogle Scholar
  12. 12.
    Cohen, M.F., Shade, J., Hiller, S., Deussen, O.: Wang tiles for image and texture generation. Int. Conf. Comput. Graph. Interact. Tech. 22(3), 287–294 (2003)Google Scholar
  13. 13.
    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 69–78 (1986)CrossRefGoogle Scholar
  14. 14.
    Deussen, O., Hiller, S., Van Overveld, C., Strothotte, T.: Floating points: a method for computing stipple drawings. Comput. Graph. Forum 19(3), 41–50 (2000)CrossRefGoogle Scholar
  15. 15.
    Deussen, O., Hiller, S., Van Overveld, C., Strothotte, T.: Floating points: a method for computing stipple drawings. Comput. Graph. Forum 19, 41–50 (2000). Wiley Online LibraryCrossRefGoogle Scholar
  16. 16.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41, 637–676 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ebeida, M.S., Mitchell, S.A., Patney, A., Davidson, A.A., Owens, J.D.: A simple algorithm for maximal Poisson-disk sampling in high dimensions. Comput. Graph. Forum (Proc. EUROGRAPHICS) 31(2), 785–794 (2012)CrossRefGoogle Scholar
  18. 18.
    Ebeida, M.S., Patney, A., Mitchell, S.A., Andrew Davidson, P.M.K., Owens, J.D.: Efficient maximal Poisson-disk sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 30(4), 49:1–49:12 (2011)CrossRefGoogle Scholar
  19. 19.
    Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (1997)CrossRefGoogle Scholar
  20. 20.
    Fattal, R.: Blue-noise point sampling using kernel density model. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3), 48:1–48:10 (2011)Google Scholar
  21. 21.
    Georgiev, I., Fajardo, M.: Blue-noise dithered sampling. In: ACM SIGGRAPH 2016 Talks, SIGGRAPH ’16. ACM, New York, NY, USA, pp. 35:1–35:1 (2016)Google Scholar
  22. 22.
    de Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 171:1–171:12 (2012)Google Scholar
  23. 23.
    Gwosdek, P., Schmaltz, C., Weickert, J., Teuber, T.: Electrostatic halftoning. J. Real-Time Image Proc. 9(2), 379–392 (2014)CrossRefGoogle Scholar
  24. 24.
    Kang, H.R.: Digital color halftoning, 1st edn. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA (1999)Google Scholar
  25. 25.
    Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. (Proc. SIGGRAPH) 11(2), 509–518 (2006)CrossRefGoogle Scholar
  26. 26.
    Kriss, Michael: Handbook of Digital Imaging. Wiley, New York (2015)CrossRefGoogle Scholar
  27. 27.
    Lagae, A., Dutré, P.: An alternative for wang tiles: colored edges versus colored corners. ACM Trans. Graph. 25(4), 1442–1459 (2006)CrossRefGoogle Scholar
  28. 28.
    Lagae, A., Dutré, P.: A comparison of methods for generating Poisson disk distributions. Comput. Graph. Forum 27(1), 114–129 (2008)CrossRefGoogle Scholar
  29. 29.
    Lloyd, S.A.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lu, A., Morris, C.J., Taylor, J., Ebert, D.S., Hansen, C., Rheingans, P., Hartner, M.: Illustrative interactive stipple rendering. IEEE Trans. Vis. Comput. Graph. 9(2), 127–138 (2003)CrossRefGoogle Scholar
  31. 31.
    Martín, D., Arroyo, G., Rodríguez, A., Isenberg, T.: A survey of digital stippling. Comput. Graph. 67, 24–44 (2017)CrossRefGoogle Scholar
  32. 32.
    Mitsa, T., Parker, K.J.: Digital halftoning technique using a blue-noise mask. J. Opt. Soc. Am. A 9(11), 1920–1929 (1992)CrossRefGoogle Scholar
  33. 33.
    Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1), 51–70 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. J. Am. Stat. Assoc. 88(89), 147153 (1992)Google Scholar
  35. 35.
    Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. (Proc. SIGGRAPH) 23(3), 488–495 (2004)CrossRefGoogle Scholar
  36. 36.
    Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Sampling with polyominoes. ACM Trans. Graph. (Proc. SIGGRAPH) 26(3), 78:1–78:6 (2007)CrossRefGoogle Scholar
  37. 37.
    Pang, W.M., Qu, Y., Wong, T.T., Cohen-Or, D., Heng, P.A.: Structure-aware halftoning. ACM Trans. Graph. 27(3), 89:1–89:8 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Pnueli, Y., Bruckstein, A.M.: Gridless halftoning: a reincarnation of the old method. Graph. Models Image Process. 58(1), 38–64 (1996)CrossRefGoogle Scholar
  39. 39.
    Purgathofer, W., Tobler, R.F., Geiler, M.: Forced random dithering: improved threshold matrices for ordered dithering, Vol. 2. In: Proceedings of 1st International Conference on Image Processing, pp. 1032–1035 (1994)Google Scholar
  40. 40.
    Schlömer, T., Heck, D., Deussen, O.: Farthest-point optimized point sets with maximized minimum distance. In: High Performance Graphics Proceedings, pp. 135–142 (2011)Google Scholar
  41. 41.
    Schretter, C., Kobbelt, L., Dehaye, P.: Golden ratio sequences for low-discrepancy sampling. J. Graph. Tools 16(2), 95–104 (2012)CrossRefGoogle Scholar
  42. 42.
    Secord, A.: Weighted Voronoi stippling. In: Proceedings of the Second International Symposium on Non-photorealistic Animation and Rendering—NPAR ’02, 1, 37 (2002)Google Scholar
  43. 43.
    Spicker, M., Hahn, F., Lindemeier, T., Saupe, D., Deussen, O.: Quantifying visual abstraction quality for stipple drawings. In: Proceedings of the Symposium on Non-photorealistic Animation and Rendering, NPAR ’17. ACM, New York, NY, USA, pp. 8:1–8:10 (2017)Google Scholar
  44. 44.
    Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)Google Scholar
  45. 45.
    Ulichney, R.: Dithering with Blue Noise. MIT Press, Cambridge (1987)Google Scholar
  46. 46.
    Ulichney, R.: Void-and-cluster method for dither array generation. In: Proceedings of SPIE - The International Society for Optical Engineering, pp. 332–343 (1993)Google Scholar
  47. 47.
    Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., Ostromoukhov, V.: Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM Trans. Graph. 33(4), 56:1–56:11 (2014)CrossRefzbMATHGoogle Scholar
  48. 48.
    Wei, L.Y.: Multi-class blue noise sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 29(4), 79:1–79:8 (2010)Google Scholar
  49. 49.
    Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with hammersley and halton points. J. Graph. Tools 2(2), 9–24 (1997)CrossRefGoogle Scholar
  50. 50.
    Xu, Y., Liu, L., Gotsman, C., Gortler, S.J.: Capacity-constrained Delaunay triangulation for point distributions. Comput. Graph. 35(3), 510–516 (2011)CrossRefGoogle Scholar
  51. 51.
    Yan, D.M., Guo, J., Jia, X., Zhang, X., Wonka, P.: Blue-noise remeshing with farthest point optimization. Comput. Graph. Forum (Proc. SGP) 33(5), 167–176 (2014)CrossRefGoogle Scholar
  52. 52.
    Yan, D.M., Guo, J., Wang, B., Zhang, X., Wonka, P.: A survey of blue-noise sampling and its applications. J. Comput. Sci. Technol. 30(3), 439–452 (2015)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Yan, D.M., Wonka, P.: Gap processing for adaptive maximal Poisson-disk sampling. ACM Trans. Graph. 32(5), 148:1–148:15 (2013)CrossRefGoogle Scholar
  54. 54.
    Yuksel, C.: Sample elimination for generating Poisson disk sample sets. Comput. Graph. Forum 34(2), 25–32 (2015)CrossRefGoogle Scholar
  55. 55.
    Zhou, B., Fang, X.: Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. ACM Trans. Graph. 22(3), 437–444 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Computer ScienceInstitue of Software Chinese Academy of SciencesBeijingChina
  3. 3.Chinese University of Hong KongHong KongChina

Personalised recommendations