The Visual Computer

, Volume 34, Issue 6–8, pp 925–936 | Cite as

Navigation in AR based on digital replicas

  • Ojaswa SharmaEmail author
  • Jalaj Pandey
  • Hammad Akhtar
  • Gaurav Rathee
Original Article


In this paper, we address the two main topics of 3D navigation and space identification within the context of mixed reality. Creating navigable digital replicas from real-life buildings is a cumbersome task. We present a mostly automated pipeline to process 3D geometry created from architectural blueprints. We discuss a coherent procedural approach to build the topological information required for navigation and a semiautomatic generation of hierarchical tags for identification of spaces. The geometric and topological information along with tags is stored in a spatial database. We address challenges in automating the entire process such that manual effort is reduced to minimal. Our approach to asset creation enables navigation and identification in both indoor and outdoor spaces. Such a digital infrastructure is central to any VR and AR system that utilizes these assets for further computations.


Geometric computation Space identification 3D navigation Indoor positioning Augmented reality 



This research was supported by Science and Engineering Research Board (SERB) of Department of Science and Technology (DST) of India (Grant No. ECR/2015/000006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (mp4 40312 KB)


  1. 1.
    Alnabhan, A., Tomaszewski, B.: Insar: indoor navigation system using augmented reality. In: Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 36–43. ACM (2014)Google Scholar
  2. 2.
    Azuma, R.T.: A survey of augmented reality. Presence Teleoper. Virtual Environ. 6(4), 355–385 (1997)CrossRefGoogle Scholar
  3. 3.
    Bartie, P.J., Mackaness, W.A.: Development of a speech-based augmented reality system to support exploration of cityscape. Trans. GIS 10(1), 63–86 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Bautembach, D., Izadi, S.: Scalable real-time volumetric surface reconstruction. ACM Trans. Graph. 32(4), 113 (2013)zbMATHGoogle Scholar
  5. 5.
    Craig, A.B.: Understanding Augmented Reality: Concepts and Applications. Morgan Kaufmann, Waltham (2013)Google Scholar
  6. 6.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  7. 7.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    El-Hakim, S.F., Beraldin, J.A., Picard, M., Godin, G.: Detailed 3d reconstruction of large-scale heritage sites with integrated techniques. IEEE Comput. Graph. Appl. 24(3), 21–29 (2004)CrossRefGoogle Scholar
  9. 9.
    Engel, J., Schöps, T., Cremers, D.: Lsd-slam: Large-scale direct monocular slam. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)Google Scholar
  10. 10.
    Feiner, S., MacIntyre, B., Höllerer, T., Webster, A.: A touring machine: prototyping 3d mobile augmented reality systems for exploring the urban environment. Pers. Technol. 1(4), 208–217 (1997)CrossRefGoogle Scholar
  11. 11.
    Google: Google Maps (2017). URL Accessed 6 Feb 2018
  12. 12.
    Grinberg, M.: Flask Web Development: Developing Web Applications with Python. O’Reilly Media, Newton (2014)Google Scholar
  13. 13.
    Heckbert, P.: A seed fill algorithm. In: Glassner, A. (ed.) Graphics Gems, pp. 275–277. Academic Press, London (1990)CrossRefGoogle Scholar
  14. 14.
    Hollerer, T., Feiner, S., Pavlik, J.: Situated documentaries: Embedding multimedia presentations in the real world. In: The Third International Symposium on Wearable Computers, 1999. Digest of Papers, pp. 79–86. IEEE (1999)Google Scholar
  15. 15.
    Kalkusch, M., Lidy, T., Knapp, N., Reitmayr, G., Kaufmann, H., Schmalstieg, D.: Structured visual markers for indoor pathfinding. In: The First IEEE International Workshop on Augmented Reality Toolkit, pp. 8–pp. IEEE (2002)Google Scholar
  16. 16.
    Langlotz, T., Degendorfer, C., Mulloni, A., Schall, G., Reitmayr, G., Schmalstieg, D.: Robust detection and tracking of annotations for outdoor augmented reality browsing. Comput. Graph. 35(4), 831–840 (2011)CrossRefGoogle Scholar
  17. 17.
    Lewis, R., Séquin, C.: Generation of 3D building models from 2D architectural plans. Comput. Aided Des. 30(10), 765–779 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Low, C.G., Lee, Y.L.: Sunmap+: An intelligent location-based virtual indoor navigation system using augmented reality. In: International Conference on Frontiers of Communications, Networks and Applications (ICFCNA 2014-Malaysia), pp. 1–6 (2014)Google Scholar
  19. 19.
    Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1(1), 21–46 (1990)CrossRefGoogle Scholar
  20. 20.
    Min, P.: [binvox] 3D mesh voxelizer. Accessed 6 Feb 2018
  21. 21.
    Mulloni, A., Seichter, H., Schmalstieg, D.: Handheld augmented reality indoor navigation with activity-based instructions. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 211–220. ACM (2011)Google Scholar
  22. 22.
    Musialski, P., Wonka, P., Aliaga, D.G., Wimmer, M., Gool, L.v., Purgathofer, W.: A survey of urban reconstruction. In: Computer Graphics Forum, vol. 32, pp. 146–177. Wiley Online Library (2013)Google Scholar
  23. 23.
    Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)CrossRefGoogle Scholar
  24. 24.
    Pandey, J., Sharma, O.: Fast and robust construction of 3D architectural models from 2D plans. In: 24th Conference on Computer Graphics, Visualization and Computer Vision (WSCG), vol. 24, pp. 335–341 (2016)Google Scholar
  25. 25.
    Rekimoto, J., Saitoh, M.: Augmented surfaces: a spatially continuous work space for hybrid computing environments. In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems, pp. 378–385. ACM (1999)Google Scholar
  26. 26.
    Savitzky, A., Golay, M.J.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)CrossRefGoogle Scholar
  27. 27.
    Shin, B., Lee, J.H., Lee, T., Kim, H.S.: Enhanced weighted k-nearest neighbor algorithm for indoor wi-fi positioning systems. In: 2012 8th International Conference on Computing Technology and Information Management (ICCM), vol. 2, pp. 574–577. IEEE (2012)Google Scholar
  28. 28.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2013)zbMATHGoogle Scholar
  29. 29.
    Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. In: Computer Graphics Forum, vol. 31, pp. 1735–1744. Wiley Online Library (2012)Google Scholar
  30. 30.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)CrossRefGoogle Scholar
  31. 31.
    Vlahakis, V., Karigiannis, J., Tsotros, M., Gounaris, M., Almeida, L., Stricker, D., Gleue, T., Christou, I.T., Carlucci, R., Ioannidis, N.: Archeoguide: first results of an augmented reality, mobile computing system in cultural heritage sites. In: Virtual Reality, Archeology, and Cultural Heritage, vol. 9 (2001)Google Scholar
  32. 32.
    Wagner, D., Mulloni, A., Langlotz, T., Schmalstieg, D.: Real-time panoramic mapping and tracking on mobile phones. In: 2010 IEEE Virtual Reality Conference (VR), pp. 211–218. IEEE (2010)Google Scholar
  33. 33.
    Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: Spatially extended kinectfusion (2012)Google Scholar
  34. 34.
    Yin, X., Wonka, P., Razdan, A.: Generating 3D building models from architectural drawings: a survey. IEEE Comput. Graph. Appl. 1, 20–30 (2009)CrossRefGoogle Scholar
  35. 35.
    Zhu, J., Zhang, H., Wen, Y.: A new reconstruction method for 3D buildings from 2D vector floor plan. Comput. Aided Des. Appl. 11(6), 704–714 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indraprastha Institute of Information Technology DelhiNew DelhiIndia

Personalised recommendations