Advertisement

The Visual Computer

, Volume 34, Issue 6–8, pp 793–804 | Cite as

3D braid guide hair reconstruction using electroluminescent wires

  • Hendrik Hachmann
  • Maren Awiszus
  • Bodo Rosenhahn
Original Article

Abstract

In this paper we propose a novel braid acquisition and 3D guide hair reconstruction method. Low-cost electroluminescent wires are woven into the braided hair strands which are thereby illuminated from the inside. Unlike state-of-the-art hair reconstruction approaches, we do not need image texture information, data-driven prior knowledge or manual editing. Instead, our workflow reconstructs braid guide hairs fully automatically using semi-open-end 3D active curves on images recorded from multiple views. The proposed pipeline extracts non-surface, internal 3D information which enables morphing and inter-character hairdo-transfer. In state-of-the-art methods, those abilities typically exist for virtually created hairstyles and not for reconstructed hairstyles. Furthermore, using the new acquisition scheme we provide a novel type of data set to the community.

Keywords

Hair modeling Image-based modeling 3D reconstruction Braids 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bouguet, J.Y.: Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/. Accessed 16 Jan 2018
  2. 2.
    Byoungwon, C., Hyeong-Seok, K.: A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. Vis. Comput. Gr. 11, 160–170 (2005).  https://doi.org/10.1109/TVCG.2005.20 CrossRefGoogle Scholar
  3. 3.
    Chai, M., Luo, L., Sunkavalli, K., Carr, N., Hadap, S., Zhou, K.: High-quality hair modeling from a single portrait photo. ACM Trans. Gr. 34(6), 204:1–204:10 (2015).  https://doi.org/10.1145/2816795.2818112 CrossRefGoogle Scholar
  4. 4.
    Chai, M., Shao, T., Wu, H., Weng, Y., Zhou, K.: AutoHair: fully automatic hair modeling from a single image. ACM Trans. Gr. 35(4), 116:1–116:12 (2016).  https://doi.org/10.1145/2897824.2925961 CrossRefGoogle Scholar
  5. 5.
    Chai, M., Wang, L., Weng, Y., Jin, X., Zhou, K.: Dynamic hair manipulation in images and videos. ACM Trans. Gr. 32(4), 75:1–75:8 (2013).  https://doi.org/10.1145/2461912.2461990 CrossRefzbMATHGoogle Scholar
  6. 6.
    Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., Zhou, K.: Single-view hair modeling for portrait manipulation. ACM Trans. Gr. 31(4), 116:1–116:8 (2012).  https://doi.org/10.1145/2185520.2185612 CrossRefGoogle Scholar
  7. 7.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001).  https://doi.org/10.1109/83.902291 CrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991).  https://doi.org/10.1016/1049-9660(91)90028-N CrossRefzbMATHGoogle Scholar
  9. 9.
    Destriau, G.: Recherches sur les scintillations des sulfures de zinc aux rayons. Journal de Chemie Physique 33, 587–625 (1936).  https://doi.org/10.1051/jcp/1936330587 CrossRefGoogle Scholar
  10. 10.
    Hadap, S., Magnenat-Thalmann, N.: Interactive Hair Styler Based on Fluid Flow, pp. 87–99. Springer Vienna, Vienna (2000).  https://doi.org/10.1007/978-3-7091-6344-3_7 Google Scholar
  11. 11.
    Herrera, T., Zinke, A., Weber, A.: Lighting hair from the inside: a thermal approach to hair reconstruction. ACM Trans. Gr. (2012).  https://doi.org/10.1145/2366145.2366165 Google Scholar
  12. 12.
    Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading. MIT Press, Cambridge (1989)Google Scholar
  13. 13.
    Hu, L., Ma, C., Luo, L., Li, H.: Robust hair capture using simulated examples. ACM Trans. Gr. (2014).  https://doi.org/10.1145/2601097.2601194 zbMATHGoogle Scholar
  14. 14.
    Hu, L., Ma, C., Luo, L., Li, H.: Single-view hair modeling using a hairstyle database. ACM Trans. Gr. (2015).  https://doi.org/10.1145/2766931 Google Scholar
  15. 15.
    Hu, L., Ma, C., Luo, L., Wei, L.Y., Li, H.: Capturing braided hairstyles. ACM Trans. Gr. 33(6), 225:1–225:9 (2014).  https://doi.org/10.1145/2661229.2661254 Google Scholar
  16. 16.
    Ishikawa, T., Kazama, Y., Sugisaki, E., Morishima, S.: Hair motion reconstruction using motion capture system. In: ACM SIGGRAPH 2007 Posters, SIGGRAPH ’07. ACM, New York, NY, USA (2007).  https://doi.org/10.1145/1280720.1280722
  17. 17.
    Jakob, W., Moon, J.T., Marschner, S.: Capturing hair assemblies fiber by fiber. ACM Trans. Gr. 28(5), 164:1–164:9 (2009).  https://doi.org/10.1145/1618452.1618510 CrossRefGoogle Scholar
  18. 18.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988).  https://doi.org/10.1007/BF00133570 CrossRefzbMATHGoogle Scholar
  19. 19.
    Laurentini, A.: The visual hull concept for Silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994).  https://doi.org/10.1109/34.273735 CrossRefGoogle Scholar
  20. 20.
    Luo, L., Zhang, C., Zhang, Z., Rusinkiewicz, S.: Wide-baseline hair capture using strand-based refinement. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 265–272 (2013).  https://doi.org/10.1109/CVPR.2013.41
  21. 21.
    Müller, O., Yang, M.Y., Rosenhahn, B.: Slice sampling particle belief propagation. In: 2013 IEEE International Conference on Computer Vision, pp. 1129–1136 (2013).  https://doi.org/10.1109/ICCV.2013.144
  22. 22.
    Paris, S., Chang, W., Kozhushnyan, O.I., Jarosz, W., Matusik, W., Zwicker, M., Durand, F.: Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Gr. (2008).  https://doi.org/10.1145/1360612.1360629 Google Scholar
  23. 23.
    Scheuermann, B., Rosenhahn, B.: Multi-sensor fusion for video segmentation. Int. J. Pattern Recognit. Artif. Intell. 28(7), 14 (2014).  https://doi.org/10.1142/S0218001414600155 CrossRefGoogle Scholar
  24. 24.
    Smith, M.B., Li, H., Shenand, T., Huang, X., Yusuf, E., Vavylonis, D.V.: Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton 67, 693–705 (2010).  https://doi.org/10.1002/cm.20481 CrossRefGoogle Scholar
  25. 25.
    von Marcard, T., Rosenhahn, B., Black, M.J., Pons-Moll, G.: Sparse inertial poser: automatic 3D human pose estimation from sparse imus. Comput. Gr. Forum 36(2), 349–360 (2017).  https://doi.org/10.1111/cgf.13131 CrossRefGoogle Scholar
  26. 26.
    Wang, L., Yu, Y., Zhou, K., Guo, B.: Example-based hair geometry synthesis. ACM Trans. Gr. 28(3), 56:1–56:9 (2009).  https://doi.org/10.1145/1531326.1531362 Google Scholar
  27. 27.
    Ward, K., Bertails, F., Kim, T.Y., Marschner, S.R., Cani, M.P., Lin, M.C.: A survey on hair modeling: styling, simulation, and rendering. In: IEEE Transactions on Visualization and Computer Graphics, pp. 213–234 (2006).  https://doi.org/10.1109/TVCG.2007.30
  28. 28.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998).  https://doi.org/10.1109/83.661186 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yu, Y.: Modeling realistic virtual hairstyles. Pac. Conf. Comput. Gr. Appl. 00, 295 (2001).  https://doi.org/10.1109/PCCGA.2001.962885 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hendrik Hachmann
    • 1
  • Maren Awiszus
    • 1
  • Bodo Rosenhahn
    • 1
  1. 1.Institut für InformationsverarbeitungLeibniz Universität HannoverHanoverGermany

Personalised recommendations