The Visual Computer

, Volume 34, Issue 6–8, pp 793–804 | Cite as

3D braid guide hair reconstruction using electroluminescent wires

  • Hendrik Hachmann
  • Maren Awiszus
  • Bodo Rosenhahn
Original Article


In this paper we propose a novel braid acquisition and 3D guide hair reconstruction method. Low-cost electroluminescent wires are woven into the braided hair strands which are thereby illuminated from the inside. Unlike state-of-the-art hair reconstruction approaches, we do not need image texture information, data-driven prior knowledge or manual editing. Instead, our workflow reconstructs braid guide hairs fully automatically using semi-open-end 3D active curves on images recorded from multiple views. The proposed pipeline extracts non-surface, internal 3D information which enables morphing and inter-character hairdo-transfer. In state-of-the-art methods, those abilities typically exist for virtually created hairstyles and not for reconstructed hairstyles. Furthermore, using the new acquisition scheme we provide a novel type of data set to the community.


Hair modeling Image-based modeling 3D reconstruction Braids 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bouguet, J.Y.: Camera calibration toolbox for Matlab. Accessed 16 Jan 2018
  2. 2.
    Byoungwon, C., Hyeong-Seok, K.: A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. Vis. Comput. Gr. 11, 160–170 (2005). CrossRefGoogle Scholar
  3. 3.
    Chai, M., Luo, L., Sunkavalli, K., Carr, N., Hadap, S., Zhou, K.: High-quality hair modeling from a single portrait photo. ACM Trans. Gr. 34(6), 204:1–204:10 (2015). CrossRefGoogle Scholar
  4. 4.
    Chai, M., Shao, T., Wu, H., Weng, Y., Zhou, K.: AutoHair: fully automatic hair modeling from a single image. ACM Trans. Gr. 35(4), 116:1–116:12 (2016). CrossRefGoogle Scholar
  5. 5.
    Chai, M., Wang, L., Weng, Y., Jin, X., Zhou, K.: Dynamic hair manipulation in images and videos. ACM Trans. Gr. 32(4), 75:1–75:8 (2013). CrossRefzbMATHGoogle Scholar
  6. 6.
    Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., Zhou, K.: Single-view hair modeling for portrait manipulation. ACM Trans. Gr. 31(4), 116:1–116:8 (2012). CrossRefGoogle Scholar
  7. 7.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). CrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991). CrossRefzbMATHGoogle Scholar
  9. 9.
    Destriau, G.: Recherches sur les scintillations des sulfures de zinc aux rayons. Journal de Chemie Physique 33, 587–625 (1936). CrossRefGoogle Scholar
  10. 10.
    Hadap, S., Magnenat-Thalmann, N.: Interactive Hair Styler Based on Fluid Flow, pp. 87–99. Springer Vienna, Vienna (2000). Google Scholar
  11. 11.
    Herrera, T., Zinke, A., Weber, A.: Lighting hair from the inside: a thermal approach to hair reconstruction. ACM Trans. Gr. (2012). Google Scholar
  12. 12.
    Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading. MIT Press, Cambridge (1989)Google Scholar
  13. 13.
    Hu, L., Ma, C., Luo, L., Li, H.: Robust hair capture using simulated examples. ACM Trans. Gr. (2014). zbMATHGoogle Scholar
  14. 14.
    Hu, L., Ma, C., Luo, L., Li, H.: Single-view hair modeling using a hairstyle database. ACM Trans. Gr. (2015). Google Scholar
  15. 15.
    Hu, L., Ma, C., Luo, L., Wei, L.Y., Li, H.: Capturing braided hairstyles. ACM Trans. Gr. 33(6), 225:1–225:9 (2014). Google Scholar
  16. 16.
    Ishikawa, T., Kazama, Y., Sugisaki, E., Morishima, S.: Hair motion reconstruction using motion capture system. In: ACM SIGGRAPH 2007 Posters, SIGGRAPH ’07. ACM, New York, NY, USA (2007).
  17. 17.
    Jakob, W., Moon, J.T., Marschner, S.: Capturing hair assemblies fiber by fiber. ACM Trans. Gr. 28(5), 164:1–164:9 (2009). CrossRefGoogle Scholar
  18. 18.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988). CrossRefzbMATHGoogle Scholar
  19. 19.
    Laurentini, A.: The visual hull concept for Silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994). CrossRefGoogle Scholar
  20. 20.
    Luo, L., Zhang, C., Zhang, Z., Rusinkiewicz, S.: Wide-baseline hair capture using strand-based refinement. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 265–272 (2013).
  21. 21.
    Müller, O., Yang, M.Y., Rosenhahn, B.: Slice sampling particle belief propagation. In: 2013 IEEE International Conference on Computer Vision, pp. 1129–1136 (2013).
  22. 22.
    Paris, S., Chang, W., Kozhushnyan, O.I., Jarosz, W., Matusik, W., Zwicker, M., Durand, F.: Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Gr. (2008). Google Scholar
  23. 23.
    Scheuermann, B., Rosenhahn, B.: Multi-sensor fusion for video segmentation. Int. J. Pattern Recognit. Artif. Intell. 28(7), 14 (2014). CrossRefGoogle Scholar
  24. 24.
    Smith, M.B., Li, H., Shenand, T., Huang, X., Yusuf, E., Vavylonis, D.V.: Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton 67, 693–705 (2010). CrossRefGoogle Scholar
  25. 25.
    von Marcard, T., Rosenhahn, B., Black, M.J., Pons-Moll, G.: Sparse inertial poser: automatic 3D human pose estimation from sparse imus. Comput. Gr. Forum 36(2), 349–360 (2017). CrossRefGoogle Scholar
  26. 26.
    Wang, L., Yu, Y., Zhou, K., Guo, B.: Example-based hair geometry synthesis. ACM Trans. Gr. 28(3), 56:1–56:9 (2009). Google Scholar
  27. 27.
    Ward, K., Bertails, F., Kim, T.Y., Marschner, S.R., Cani, M.P., Lin, M.C.: A survey on hair modeling: styling, simulation, and rendering. In: IEEE Transactions on Visualization and Computer Graphics, pp. 213–234 (2006).
  28. 28.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998). MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yu, Y.: Modeling realistic virtual hairstyles. Pac. Conf. Comput. Gr. Appl. 00, 295 (2001). Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hendrik Hachmann
    • 1
  • Maren Awiszus
    • 1
  • Bodo Rosenhahn
    • 1
  1. 1.Institut für InformationsverarbeitungLeibniz Universität HannoverHanoverGermany

Personalised recommendations