The Visual Computer

, Volume 35, Issue 2, pp 289–300 | Cite as

Motion rank: applying page rank to motion data search

  • Myung Geol Choi
  • Taesoo KwonEmail author
Original Article


As the uses of motion capture data increase, the amount of available motion data on the web also grows. In this paper, we investigate a new method to retrieve and visualize motion data in a similar manner to Google Image Search. The main idea is to represent raw motion data into a series of short animated clip arts, called motion clip arts. Short animated clip arts can be quickly browsed and understood by people even though many of them appear at the same time on the screen. We first temporally segment the raw motion data files into short yet semantically meaningful motion segments. Then, we convert the motion segments into motion clip arts in a way that emphasizes the main motion and minimizes the data size for the efficient transmitting and processing on the web. When a user input query is received, our system first retrieves all the relevant motion clip arts by considering the input keywords and similarity between motions. Then, the retrieved results are re-ranked by our ranking algorithm developed based on the Google ImageRank algorithm. To prove the usability of our method, we build a web-based motion search system with the entire data collections of the CMU motion database. The experimental results show significant improvement, in terms of relevancy, in comparison with the simple keyword-based search interface.


Motion capture data Retrieval Ranking algorithm Visualization Stick figure 



We thank the anonymous reviewers for their comments and suggestions. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03930472) and partially supported by the NRF of Korea (NRF-MIAXA003-2010-0029744). This work was also supported by the Catholic University of Korea, Research Fund, 2017.

Supplementary material

371_2018_1498_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (pdf 2264 KB)

Supplementary material 2 (mp4 52844 KB)


  1. 1.
    Assa, J., Caspi, Y., Cohen-Or, D.: Action synopsis: pose selection and illustration. ACM T Graphic (SIGGRAPH 2005) pp. 667–676 (2005)Google Scholar
  2. 2.
    Barbič, J., Safonova, A., Pan, J.Y., Faloutsos, C., Hodgins, J.K., Pollard, N.S.: Segmenting motion capture data into distinct behaviors. In: Proceedings of Graphics Interface 2004, pp. 185–194. Canadian Human-Computer Communications Society (2004)Google Scholar
  3. 3.
    Beaudoin, P., Coros, S., van de Panne, M., Poulin, P.: Motion-motif graphs. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 117–126. Eurographics Association (2008)Google Scholar
  4. 4.
    Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search engine. Comput. Netw. 56(18), 3825–3833 (2012)CrossRefGoogle Scholar
  5. 5.
    Choi, M.G., Noh, S.T., Komura, T., Igarashi, T.: Dynamic comics for hierarchical abstraction of 3d animation data. Comput. Graph. Forum 32(7), 1–9 (2013)CrossRefGoogle Scholar
  6. 6.
    Choi, M.G., Yang, K., Igarashi, T., Mitani, J., Lee, J.: Retrieval and visualization of human motion data via stick figures. Comput. Graph. Forum 31(7), 2057–2065 (2012)CrossRefGoogle Scholar
  7. 7.
    CMU-Graphics-Lab: CMU motion capture database. Accessed 1 Aug 2017
  8. 8.
    Daras, P., Axenopoulos, A.: A 3d shape retrieval framework supporting multimodal queries. Int. J. Comput. Vis. 89(2–3), 229–247 (2010)CrossRefGoogle Scholar
  9. 9.
    Deng, Z., Gu, Q., Li, Q.: Perceptually consistent example-based human motion retrieval. In: Proceedings of the 2009 symposium on Interactive 3D graphics and games, I3D ’09, pp. 191–198 (2009)Google Scholar
  10. 10.
    Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., Alexa, M.: Sketch-based shape retrieval. ACM Trans. Graph. 31(4), 31–1 (2012)Google Scholar
  11. 11.
    Hahne, B.: Bvh conversions of Carnegie-Mellon motion capture dataset. Accessed 1 Aug 2017
  12. 12.
    Hsu, W.H., Kennedy, L.S., Chang, S.F.: Video search reranking through random walk over document-level context graph. In: Proceedings of the 15th ACM international conference on Multimedia, pp. 971–980. ACM (2007)Google Scholar
  13. 13.
    Huang, S.S., Shamir, A., Shen, C.H., Zhang, H., Sheffer, A., Hu, S.M., Cohen-Or, D.: Qualitative organization of collections of shapes via quartet analysis. ACM Trans. Graph. (TOG) 32(4), 71 (2013)zbMATHGoogle Scholar
  14. 14.
    Jang, S., Elmqvist, N., Ramani, K.: Motionflow: visual abstraction and aggregation of sequential patterns in human motion tracking data. IEEE Trans. Visual Comput. Graph. 22(1), 21–30 (2016)CrossRefGoogle Scholar
  15. 15.
    Jing, Y., Baluja, S.: Pagerank for product image search. In: Proceedings of the 17th International Conference on World Wide Web, pp. 307–316. ACM (2008)Google Scholar
  16. 16.
    Jing, Y., Baluja, S.: Visualrank: applying pagerank to large-scale image search. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1877–1890 (2008)CrossRefGoogle Scholar
  17. 17.
    Kapadia, M., Chiang, I.K., Thomas, T., Badler, N.I., Kider Jr., J.T., et al.: Efficient motion retrieval in large motion databases. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 19–28. ACM (2013)Google Scholar
  18. 18.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 473–482. ACM (2002)Google Scholar
  20. 20.
    Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–10 (2010)Google Scholar
  21. 21.
    Kwon, T., Shin, S.Y.: A steering model for on-line locomotion synthesis. Comput. Anim. Virtual Worlds 18(4–5), 463–472 (2007)CrossRefGoogle Scholar
  22. 22.
    Lan, R., Sun, H.: Automated human motion segmentation via motion regularities. Vis. Comput. 31(1), 35–53 (2015)CrossRefGoogle Scholar
  23. 23.
    Laraba, S., Brahimi, M., Tilmanne, J., Dutoit, T.: 3D skeleton-based action recognition by representing motion capture sequences as 2D-RGB images. Comput. Anim. Virtual Worlds 28(3–4), e1782 (2017).
  24. 24.
    Li, M., Leung, H.: Graph-based representation learning for automatic human motion segmentation. Multimed. Tools Appl. 75(15), 9205–9224 (2016)CrossRefGoogle Scholar
  25. 25.
    Max-Planck-Institut: Motion capture database HDM05. (2005) Accessed 1 Aug 2017
  26. 26.
    MoCap-Online: MoCap online. Accessed 1 Aug 2017
  27. 27.
    Müller, M., Baak, A., Seidel, H.P.: Efficient and robust annotation of motion capture data. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 17–26 (2009)Google Scholar
  28. 28.
    Müller, M., Röder, T.: Motion templates for automatic classification and retrieval of motion capture data. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 137–146. Eurographics Association (2006)Google Scholar
  29. 29.
    Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 677–685. ACM (2005)Google Scholar
  30. 30.
    Numaguchi, N., Nakazawa, A., Shiratori, T., Hodgins, J.K.: A puppet interface for retrieval of motion capture data. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 157–166. ACM (2011)Google Scholar
  31. 31.
    Page, L., Brin, S., Motwani, R.,Winograd, T.: The PageRank citation ranking: bring order to the web. Technical Report, Stanford University (1998)Google Scholar
  32. 32.
    Quint, A.: Scalable vector graphics. IEEE MultiMedia 10(3), 99–102 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ruxanda, M.M., Nanopoulos, A., Jensen, C.S., Manolopoulos, Y.: Ranking music data by relevance and importance. In: 2008 IEEE International Conference on Multimedia and Expo, pp. 549–552. IEEE (2008)Google Scholar
  34. 34.
    Sedmidubsky, J., Elias, P., Zezula, P.: Effective and efficient similarity searching in motion capture data. Multimed. Tools Appl. 1–22 (2017).
  35. 35.
    Sedmidubsky, J., Zezula, P., Svec, J.: Fast subsequence matching in motion capture data. In: Advances in Databases and Information Systems, pp. 59–72 (2017)Google Scholar
  36. 36.
    SNU-Movement-Research-Lab: SNU motion database. (2009) mdb/. Accessed 1 Aug 2017
  37. 37.
    Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of human motion. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 167–176 (2014)Google Scholar
  38. 38.
    Wang, X., Chen, L., Jing, J., Zheng, H.: Human motion capture data retrieval based on semantic thumbnail. Multimed. Tools Appl. 75(19), 11723–11740 (2016)CrossRefGoogle Scholar
  39. 39.
    Wang, Y., Neff, M.: Deep signatures for indexing and retrieval in large motion databases. In: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, pp. 37–45. ACM (2015)Google Scholar
  40. 40.
    Won, J., Lee, K., O’Sullivan, C., Hodgins, J.K., Lee, J.: Generating and ranking diverse multi-character interactions. ACM Trans. Graph. (TOG) 33(6), 219 (2014)CrossRefGoogle Scholar
  41. 41.
    Wood, L.: Graphics interchange format (sm) version 89a. Graph. Interchange Format Program. Ref. 1(1), 1–34 (1990)MathSciNetGoogle Scholar
  42. 42.
    Wu, X., Tournier, M., Reveret, L.: Natural character posing from a large motion database. IEEE Comput. Graph. Appl. 31(3), 69–77 (2011)CrossRefGoogle Scholar
  43. 43.
    Xu, K., Chen, K., Fu, H., Sun, W.L., Hu, S.M.: Sketch2scene: sketch-based co-retrieval and co-placement of 3d models. ACM Trans. Graph. (TOG) 32(4), 123 (2013)CrossRefGoogle Scholar
  44. 44.
    Yang, C.C., Chan, K.: Retrieving multimedia web objects based on pagerank algorithm. In: Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, pp. 906–907. ACM (2005)Google Scholar
  45. 45.
    Yoo, I., Vanek, J., Nizovtseva, M., Adamo-Villani, N., Benes, B.: Sketching human character animations by composing sequences from large motion database. Vis. Comput. 30(2), 213–227 (2014)CrossRefGoogle Scholar
  46. 46.
    Yoshizaki, W., Sugiura, Y., Chiou, A.C., Hashimoto, S., Inami, M., Igarashi, T., Akazawa, Y., Kawachi, K., Kagami, S., Mochimaru, M.: An actuated physical puppet as an input device for controlling a digital manikin. In: 2011 Annual Conference on Human Factors in Computing Systems, pp. 637–646 (2011)Google Scholar
  47. 47.
    Zhou, F., De la Torre, F., Hodgins, J.K.: Aligned cluster analysis for temporal segmentation of human motion. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition, 2008. FG’08, pp. 1–7. IEEE (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Catholic University of KoreaSeoulKorea
  2. 2.Hanyang UniversitySeoulKorea

Personalised recommendations