Advertisement

The Visual Computer

, Volume 35, Issue 4, pp 579–590 | Cite as

An optimized source term formulation for incompressible SPH

  • Jens CornelisEmail author
  • Jan Bender
  • Christoph Gissler
  • Markus Ihmsen
  • Matthias Teschner
Original Article

Abstract

Incompressible SPH (ISPH) is a promising concept for the pressure computation in SPH. It works with large timesteps and the underlying pressure Poisson equation (PPE) can be solved very efficiently. Still, various aspects of current ISPH formulations can be optimized. This paper discusses issues of the two standard source terms that are typically employed in PPEs, i.e., density invariance (DI) and velocity divergence (VD). We show that the DI source term suffers from significant artificial viscosity, while the VD source term suffers from particle disorder and volume loss. As a conclusion of these findings, we propose a novel source term handling. A first PPE is solved with the VD source term to compute a divergence-free velocity field with minimized artificial viscosity. To address the resulting volume error and particle disorder, a second PPE is solved to improve the sampling quality. The result of the second PPE is used for a particle shift (PS) only. The divergence-free velocity field—computed from the first PPE—is not changed, but only resampled at the updated particle positions. Thus, the proposed source term handling incorporates velocity divergence and particle shift (VD + PS). The proposed VD + PS variant does not only improve the quality of the computed velocity field, but also accelerates the performance of the ISPH pressure computation. This is illustrated for IISPH—a recent ISPH implementation—where a performance gain factor of 1.6 could be achieved.

Keywords

Three-dimensional graphics and realism Animation Fluid simulation 

Supplementary material

Supplementary material 1 (mp4 77632 KB)

References

  1. 1.
    Adams, B., Pauly, M., Keiser, R., Guibas, L.: Adaptively sampled particle fluids. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 26, pp. 48:1–48:7 (2007)Google Scholar
  2. 2.
    Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)Google Scholar
  3. 3.
    Monaghan, J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)CrossRefGoogle Scholar
  4. 4.
    Monaghan, J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mueller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)Google Scholar
  6. 6.
    Yan, X., Jiang, Y.T., Li, C.F., Martin, R.R., Hu, S.M.: Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Gr. 35(4), 79:1–79:11 (2016).  https://doi.org/10.1145/2897824.2925897 Google Scholar
  7. 7.
    He, X., Liu, N., Wang, H., Wang, G.: Local Poisson SPH for viscous incompressible fluids. Comput. Gr. Forum 31, 1948–1958 (2012)CrossRefGoogle Scholar
  8. 8.
    Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 28, pp. 40:1–40:6 (2009)Google Scholar
  9. 9.
    Yang, T., Lin, M.C., Martin, R.R., Chang, J., Hu, S.M.: Versatile interactions at interfaces for SPH-based simulations. In: Kavan, L., Wojtan, C. (eds.) Eurographics/ ACM SIGGRAPH Symposium on Computer Animation. The Eurographics Association (2016)Google Scholar
  10. 10.
    Yang, T., Martin, R.R., Lin, M.C., Chang, J., Hu, S.M.: Pairwise force SPH model for real-time multi-interaction applications. IEEE Trans. Vis. Comput. Gr. 23(10), 2235–2247 (2017)CrossRefGoogle Scholar
  11. 11.
    Bender, J., Mueller, M., Otaduy, M.A., Teschner, M., Macklin, M.: A survey on position-based simulation methods in computer graphics. Comput. Gr. Forum 33(6), 228–251 (2014)CrossRefGoogle Scholar
  12. 12.
    Bodin, K., Lacoursire, C., Servin, M.: Constraint fluids. IEEE Trans. Vis. Comput. Gr. 18(3), 516–526 (2012)CrossRefGoogle Scholar
  13. 13.
    Cornelis, J., Ihmsen, M., Peer, A., Teschner, M.: IISPH-FLIP for incompressible fluids. Comput. Gr. Forum. 33(2), 255–262 (2014).  https://doi.org/10.1111/cgf.12324 CrossRefGoogle Scholar
  14. 14.
    Cummins, S., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fürstenau, J.P., Avci, B., Wriggers, P.: A comparative numerical study of pressure-Poisson-equation discretization strategies for SPH. In: 12th International SPHERIC Workshop, Ourense, Spain, June, pp. 1–8 (2017)Google Scholar
  16. 16.
    Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Gr. 20(3), 426–435 (2014)CrossRefGoogle Scholar
  17. 17.
    Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: SPH fluids in computer graphics. In: Lefebvre, S., Spagnuolo, M. (eds.) Eurographics 2014–State of the Art Reports, pp. 21–42. The Eurographics Association (2014).  https://doi.org/10.2312/egst.20141034.
  18. 18.
    Peer, A., Gissler, C., Band, S., Teschner, M.: An implicit SPH formulation for incompressible linearly elastic solids. Comput. Graph. Forum. (2017).  https://doi.org/10.1111/cgf.13317
  19. 19.
    Peer, A., Ihmsen, M., Cornelis, J., Teschner, M.: An implicit viscosity formulation for SPH fluids. ACM Trans. Gr. 34(4), 114:1–114:10 (2015).  https://doi.org/10.1145/2766925 CrossRefGoogle Scholar
  20. 20.
    Peer, A., Teschner, M.: Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE Trans. Vis. Comput. Gr. 23(12), 2656–2662 (2017)CrossRefGoogle Scholar
  21. 21.
    Takahashi, T., Dobashi, Y., Nishita, T., Lin, MC.: An efficient hybrid incompressible SPH solver with interface handling for boundary conditions. Comput. Gr. Forum (2016).  https://doi.org/10.1111/cgf.13292
  22. 22.
    Winchenbach, R., Hochstetter, H., Kolb, A.: Infinite continuous adaptivity for incompressible SPH. ACM Trans. Gr. 36(4), 102:1–102:10 (2017).  https://doi.org/10.1145/3072959.3073713 CrossRefGoogle Scholar
  23. 23.
    Khayyer, A., Gotoh, H., Shao, S.: Enhanced predictions of wave impact pressure by improved incompressible SPH methods. Appl. Ocean Res. 31(2), 111–131 (2009).  https://doi.org/10.1016/j.apor.2009.06.003 CrossRefGoogle Scholar
  24. 24.
    Shao, S., Lo, Y.: Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26(7), 787–800 (2003)CrossRefGoogle Scholar
  25. 25.
    Bender, J., Koschier, D.: Divergence-free Smoothed Particle Hydrodynamics. In: Proceedings of the 2015 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM (2015)Google Scholar
  26. 26.
    Hu, X., Adams, N.A.: An incompressible multi-phase SPH method. J. Comput. Phys. 227(1), 264–278 (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kang, N., Sagong, D.: Incompressible SPH using the divergence-free condition. Comput. Gr. Forum. 33(7), 219–228 (2014).  https://doi.org/10.1111/cgf.12490 Google Scholar
  28. 28.
    Nestor, R., Basa, M., Quinlan, N.: Moving boundary problems in the finite volume particle method. In: 3rd ERCOFTAC SPHERIC Workshop on SPH Applications, Lausanne, Switzerland, June, pp. 118–123 (2008)Google Scholar
  29. 29.
    Skillen, A., Lind, S., Stansby, P.K., Rogers, B.D.: Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput. Methods Appl. Mech. Eng. 265, 163–173 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Xu, R., Stansby, P., Laurence, D.: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228(18), 6703–6725 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Cline, M.B., Pai, D.K.: Post-stabilization for rigid body simulation with contact and constraints. In: IEEE International Conference on Robotics and Automation, 2003. Proceedings. ICRA’03, vol. 3, pp. 3744–3751. IEEE (2003)Google Scholar
  32. 32.
    Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22(104), 745–762 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Macklin, M., Müller, M.: Position based fluids. ACM Trans. Gr.: TOG 32(4), 104 (2013)CrossRefzbMATHGoogle Scholar
  34. 34.
    Ihmsen, M., Akinci, N., Becker, M., Teschner, M. (2011) A parallel SPH implementation on multi-core CPUs. Comput. Gr. Forum.  https://doi.org/10.1111/j.1467-8659.2010.01832.x
  35. 35.
    Winchenbach, R., Hochstetter, H., Kolb, A.: Constrained neighbor lists for SPH-based fluid simulations. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 49–56. Eurographics Association (2016)Google Scholar
  36. 36.
    Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Gr.: TOG 31(4), 62 (2012)CrossRefGoogle Scholar
  37. 37.
    Ihmsen, M., Akinci, N., Gissler, M., Teschner, M.: Boundary handling and adaptive time-stepping for PCISPH. In: Proceedings VRIPHYS, pp. 79–88 (2010)Google Scholar
  38. 38.
    Morris, J., Fox, P., Zhu, Y.: Modeling low Reynolds number incompressible flows. J. Comput. Phys. 136, 214–226 (1997)CrossRefzbMATHGoogle Scholar
  39. 39.
    Tartakovsky, A.M., Panchenko, A.: Pairwise force smoothed particle hydrodynamics model for multiphase flow. J. Comput. Phys. 305(C), 1119–1146 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Akinci, N., Akinci, G., Teschner, M.: Versatile surface tension and adhesion for SPH fluids. In: ACM Transactions on Graphics (Proc. SIGGRAPH Asia), vol. 32, no (6), pp. 182:1–182:8 (2013)Google Scholar
  41. 41.
    Geier, M., Greiner, A., Korvink, J.: Galilean invariant viscosity term for an thermal integer lattice Boltzmann automaton in three dimensions. In: NSTI Nanotechnology Conference and Trade Show p. 255258 (2004)Google Scholar
  42. 42.
    Hess, B.: Determining the shear viscosity of model liquids from molecular dynamics simulations. BThe J. Chem. Phys. 116(1), 209 (2002)MathSciNetCrossRefGoogle Scholar
  43. 43.
    FIFTY2 Technology GmbH: PreonLab. http://www.fifty2.eu (2017). Accessed 21 Dec 2017
  44. 44.
    He, X., Liu, N., Li, S., Wang, H., Wang, G.: Local Poisson SPH for viscous incompressible fluids. Comput. Gr. Forum. 31(6), 1948–1958 (2012).  https://doi.org/10.1111/j.1467-8659.2012.03074.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FIFTY2 Technology GmbHFreiburg im BreisgauGermany
  2. 2.RWTH Aachen UniversityAachenGermany
  3. 3.University of FreiburgFreiburg im BreisgauGermany

Personalised recommendations