Advertisement

The Visual Computer

, Volume 35, Issue 4, pp 565–577 | Cite as

Fast example searching for input-adaptive data-driven dehazing with Gaussian process regression

  • Xin FanEmail author
  • Xianxuan Tang
  • Minjun Hou
  • Zhongxuan Luo
Original Article
  • 98 Downloads

Abstract

Recently, data-driven approaches are prevailing in low-level image processing including single image dehazing. The performance of these methods can behave better when the learning process adapts to the input. This input-adaptive training demands efficiently selecting optimal examples for the input from a large training set. In this paper, we address the issue of input-specific example searching and propose a fast searching strategy on vast image examples to learn a more accurate Gaussian process (GP) regressor for single image dehazing. The GP regression learnt from these optimal examples is able to produce the transmission prediction with lower variance and thus renders high robustness. Extensive experiments on hazy images at various haze levels demonstrate the effectiveness of the proposed example searching compared with the state-of-the-art data-driven dehazing methods.

Keywords

Image dehazing Example searching Gaussian process regression Input adaptive 

Notes

Acknowledgements

This work is partially supported by the Natural Science Foundation of China under Grant Nos. 61572096, 61432003, and 61733002. The authors are grateful to Prof. Ming-Ting Sun at the University of Washington and Dr. Jue Wang at Megvii Inc. for their constructive discussions and suggestions.

References

  1. 1.
    Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P.: A fast semi-inverse approach to detect and remove the haze from a single image. In: Asian Conference on Computer Vision, pp. 501–514. Springer (2011)Google Scholar
  2. 2.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)zbMATHGoogle Scholar
  3. 3.
    Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: Computer Vision and Pattern Recognition, pp. 2392–2399. IEEE (2012)Google Scholar
  4. 4.
    Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. arXiv preprint arXiv:1601.07661 (2016)
  5. 5.
    Cao, Y., Brubaker, M.A., Fleet, D.J., Hertzmann, A.: Efficient optimization for sparse Gaussian process regression. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2013)Google Scholar
  6. 6.
    Chen, L., Lu, G., Zhang, D.: Effects of different Gabor filter parameters on image retrieval by texture. In: ACM International Conference Multimedia, pp. 273–278. Citeseer (2004)Google Scholar
  7. 7.
    Crete, F., Dolmiere, T., Ladret, P., Nicolas, M.: The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: Rogowitz, BE., Pappas, TN., Daly, SJ. (eds.) Electronic Imaging 2007, pp. 64,920I–64,920I. International Society for Optics and Photonics (2007)Google Scholar
  8. 8.
    Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)CrossRefGoogle Scholar
  9. 9.
    Fan, X., Gao, R., Wang, Y.: Example-based haze removal with two-layer Gaussian process regressions. In: Keyser, J., Kim, Y.J., Wonka, P. (eds.) Pacific Graphics Short Papers. The Eurographics Association (2014).  https://doi.org/10.2312/pgs.20141260
  10. 10.
    Fan, X., Liu, R., Huyan, K., Feng, Y., Luo, Z.: Self-reinforced cascaded regression for face alignment. In: AAAI (2018)Google Scholar
  11. 11.
    Fan, X., Wang, Y., Gao, R., Luo, Z.: Haze editing with natural transformations. Vis. Comput. 32, 137–147 (2016)CrossRefGoogle Scholar
  12. 12.
    Fan, X., Wang, Y., Tang, X., Gao, R., Luo, Z.: Two-layer Gaussian process regression with example selection for image dehazing. IEEE Trans. Circuits Syst. Video Technol. (2016).  https://doi.org/10.1109/TCSVT.2016.2592328 Google Scholar
  13. 13.
    Fattal, R.: Single image dehazing. ACM Trans. Graph. 27(3), 72:1–72:9 (2008).  https://doi.org/10.1145/1360612.1360671 CrossRefGoogle Scholar
  14. 14.
    Feng, Y., Liu, R., Fan, X., Huyan, K., Luo, Z.: Leveraging geometric correlation for input-adaptive facial landmark regression. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 385–390 (2017)Google Scholar
  15. 15.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. Comput. Graph. Appl. 22(2), 56–65 (2002)CrossRefGoogle Scholar
  16. 16.
    Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40(1), 25–47 (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Frost, R., Armstrong, B.C., Siegelman, N., Christiansen, M.H.: Domain generality versus modality specificity: the paradox of statistical learning. Trends Cogn. Sci. 19(3), 117–125 (2015)CrossRefGoogle Scholar
  18. 18.
    Gibson, K., Belongie, S., Nguyen, T.: Example based depth from fog. In: International Conference on Image Processing, pp. 728–732. IEEE (2013)Google Scholar
  19. 19.
    Gibson, K.B., Belongie, S.J., Nguyen, T.Q.: Example based depth from fog. In: International Conference on Image Processing, pp. 728–732. IEEE (2013)Google Scholar
  20. 20.
    He, H., Siu, W.C.: Single image super-resolution using Gaussian process regression. In: Computer Vision and Pattern Recognition, pp. 449–456 (2011)Google Scholar
  21. 21.
    He, K., Sun, J., Tang, X.: Guided image filtering. In: European Conference on Computer Vision, vol. 35(6), pp. 1397–1409 (2011).  https://doi.org/10.1109/TPAMI.2012.213
  22. 22.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2012).  https://doi.org/10.1109/TPAMI.2010.168 Google Scholar
  23. 23.
    Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)CrossRefGoogle Scholar
  24. 24.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: European Conference on Computer Vision, pp. 304–317. Springer (2008)Google Scholar
  25. 25.
    Kwon, Y., Kim, K.I., Tompkin, J., Kim, J.H., Theobalt, C.: Efficient learning of image super-resolution and compression artifact removal with semi-local Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1792–1805 (2015)CrossRefGoogle Scholar
  26. 26.
    Lazarogredilla, M., Quinonerocandela, J., Rasmussen, C.E., Figueirasvidal, A.R.: Sparse spectrum Gaussian process regression. J. Mach. Learn. Res. 11, 1865–1881 (2010)MathSciNetGoogle Scholar
  27. 27.
    Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing via multi-scale convolutional neural networks. In: European Conference on Computer Vision (2016)Google Scholar
  28. 28.
    Ren, X., Malik, J.: Learning a classification model for segmentation. In: International Conference on Computer Vision, pp. 10–17. IEEE (2003)Google Scholar
  29. 29.
    Saxena, A., Sun, M., Ng, A.Y.: Learning 3-d scene structure from a single still image. In: International Conference on Computer Vision (2007)Google Scholar
  30. 30.
    Schmidt, U., Rother, C., Nowozin, S., Jancsary, J., Roth, S.: Discriminative non-blind deblurring. In: Computer Vision and Pattern Recognition, pp. 604–611 (2013)Google Scholar
  31. 31.
    Settles, B.: Active Learning Literature Survey. Computer Sciences Technical Report 1648. University of Wisconsin-Madison (2010)Google Scholar
  32. 32.
    Silpaanan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching. In: Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)Google Scholar
  33. 33.
    Sun, L., Hays, J.: Super-resolution from internet-scale scene matching. In: International Conference on Computational Photography, pp. 1–12. IEEE (2012)Google Scholar
  34. 34.
    Tan, R.: Visibility in bad weather from a single image. In: Computer Vision and Pattern Recognition, pp. 1–8 (2008).  https://doi.org/10.1109/CVPR.2008.4587643
  35. 35.
    Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: Computer Vision and Pattern Recognition (2014)Google Scholar
  36. 36.
    Tang, X., Fan, X., Duan, Y., Luo, Z.: A fast training example searching algorithm for data-driven dehazing. In: International Conference on Digital Home (2016)Google Scholar
  37. 37.
    Yue, H., Sun, X., Yang, J., Wu, F.: CID: Combined image denoising in spatial and frequency domains using web images. In: Computer Vision and Pattern Recognition, pp. 2933–2940 (2014)Google Scholar
  38. 38.
    Zhao, X., Wang, S., Li, S., Li, J.: Passive image-splicing detection by a 2-d noncausal Markov model. IEEE Trans. Circuits Syst. Video Technol. 25(2), 185–199 (2015)CrossRefGoogle Scholar
  39. 39.
    Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zoran, D., Isola, P., Krishnan, D., Freeman, W.T.: Learning ordinal relationships for mid-level vision. In: International Conference on Computer Vision, pp. 388–396 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xin Fan
    • 1
    Email author
  • Xianxuan Tang
    • 2
  • Minjun Hou
    • 2
  • Zhongxuan Luo
    • 2
  1. 1.DUT-RU International School of Information Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.School of SoftwareDalian University of TechnologyDalianChina

Personalised recommendations