Advertisement

A practical methodology for computer-aided design of custom 3D printable casts for wrist fractures

  • Francesco Buonamici
  • Rocco Furferi
  • Lapo Governi
  • Simone Lazzeri
  • Kathleen S. McGreevy
  • Michaela Servi
  • Emiliano Talanti
  • Francesca Uccheddu
  • Yary VolpeEmail author
Original Article
  • 41 Downloads

Abstract

In recent years, breakthroughs in the fields of reverse engineering and additive manufacturing techniques have led to the development of innovative solutions for personalized medicine. 3D technologies are quickly becoming a new treatment concept that hinges on the ability to shape patient-specific devices. Among the wide spectrum of medical applications, the orthopaedic sector is experiencing the most benefits. Several studies proposed modelling procedures for patient-specific 3D-printed casts for wrist orthoses, for example. Unfortunately, the proposed approaches are not ready to be used directly in clinical practice since the design of these devices requires significant interaction among medical staff, reverse engineering experts, additive manufacturing specialists and CAD designers. This paper proposes a new practical methodology to produce 3D printable casts for wrist immobilization with the aim of overcoming these drawbacks. In particular, the idea is to realize an exhaustive system that can be used within a paediatric environment. It should provide both a fast and accurate dedicated scanning of the hand-wrist-arm district, along with a series of easy-to-use semi-automatic tools for the modelling of the medical device. The system was designed to be used directly by the clinical staff after a brief training. It was tested on a set of five case studies with the aim of proving its general reliability and identifying possible major flaws. Casts obtained using the proposed system were manufactured using a commercial 3D printer, and the device’s compliance with medical requirements was tested. Results showed that the designed casts were correctly generated by the medical staff without the need of involving engineers. Moreover, positive feedback was provided by the users involved in the experiment.

Keywords

CAD Reverse engineering Orthosis modelling Cast modelling Personalized medicine 

Notes

Acknowledgements

The authors wish to acknowledge the valuable contribution of Gianmaria Viciconte in providing useful hints for processing 3D data. The authors also wish to thank the Fondazione Ospedale Pediatrico Meyer Onlus (http://www.fondazionemeyer.it/) for funding the T3DDY lab (Personalized paediatrics by inTegrating 3D aDvanced technologY), which originated and made possible this research.

References

  1. 1.
    Mulford, J.S., Babazadeh, S., Mackay, N.: Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J. Surg. 86, 648–653 (2016).  https://doi.org/10.1111/ans.13533 CrossRefGoogle Scholar
  2. 2.
    Eltorai, A.E.M., Nguyen, E., Daniels, A.H.: Three-dimensional printing in orthopedic surgery. Orthopedics 38, 684–687 (2015).  https://doi.org/10.3928/01477447-20151016-05 CrossRefGoogle Scholar
  3. 3.
    Boyd, A.S., Benjamin, H.J., Asplund, C.: Principles of casting and splinting. Am. Fam. Physician 79, 16–22 (2009)Google Scholar
  4. 4.
    Chudnofsky, C.R., Byers, S.E.: Splinting techniques. In: Roberts, J.R., Hedges, J.R., Chanmugam, A.S. (eds.) Clinical Procedures in Emergency Medicine E-Book, 4th edn. Elsevier Health Sciences, Amsterdam (2004)Google Scholar
  5. 5.
  6. 6.
    Structure Sensor Press Info. Structure: https://structure.io/press#press-photos (n.d.). Accessed 4 May 2018
  7. 7.
    Holey, realizzazione di tutori ortopedici per i vostri pazienti: https://holey.it/ (n.d.). Accessed 4 May 2018
  8. 8.
    Evill J.: Cortex–Evill 2013. http://www.evilldesign.com/cortex. Accessed 4 May 2018
  9. 9.
    Osteoid: http://www.osteoid.com/ (n.d.). Accessed 4 May 2018
  10. 10.
    Lin, H., Shi. L., Wang. D.: A rapid and intelligent designing technique for patient-specific and 3D-printed orthopedic cast. 3D Print Med. 2:4 (2015).  https://doi.org/10.1186/s41205-016-0007-7
  11. 11.
    Kim, H., Jeong, S.: Case study: hybrid model for the customized wrist orthosis using 3D printing. J. Mech. Sci. Technol. 29, 5151–5156 (2015).  https://doi.org/10.1007/s12206-015-1115-9 CrossRefGoogle Scholar
  12. 12.
    Palousek, D., Rosicky, J., Koutny, D., Stoklásek, P., Navrat, T.: Pilot study of the wrist orthosis design process. Rapid Prototyp. J. 20, 27–32 (2014).  https://doi.org/10.1108/RPJ-03-2012-0027 CrossRefGoogle Scholar
  13. 13.
    Chen, Y.-J., Lin, H., Zhang, X., Huang, W., Shi, L., Wang, D.: Application of 3D–printed and patient-specific cast for the treatment of distal radius fractures: initial experience. 3D Print Med 3:11 (2017).  https://doi.org/10.1186/s41205-017-0019-y
  14. 14.
    Intel® RealSenseTM Technology: http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html (2015). Accessed 4 May 2018
  15. 15.
    Carfagni, M., Furferi, R., Governi, L., Servi, M., Uccheddu, F., Volpe, Y., et al.: Fast and low cost acquisition and reconstruction system for human hand-wrist-arm anatomy. Proced. Manuf. 11, 1600–1608 (2017).  https://doi.org/10.1016/J.PROMFG.2017.07.306 CrossRefGoogle Scholar
  16. 16.
    Carfagni, M., Furferi, R., Governi, L., Servi, M., Uccheddu, F., Volpe, Y.: On the performance of the intel SR300 depth camera: metrological and critical characterization. IEEE Sens. J. 17, 4508–4519 (2017).  https://doi.org/10.1109/JSEN.2017.2703829 CrossRefGoogle Scholar
  17. 17.
    Gordon C.: Anthropometric data 2006:50. http://www.theergonomicscenter.com/graphics/WorkstationDesign/Tables.pdf. Accessed 4 May 2018
  18. 18.
    Zanuttigh, P., Marin, G., Dal Mutto, C., Dominio, F., Minto, L., Cortelazzo, G.M.: Operating Principles of Structured Light Depth Cameras. Time-of-Flight Struct. Light Depth Cameras, pp. 43–79. Springer International Publishing, Cham (2016).  https://doi.org/10.1007/978-3-319-30973-6_2
  19. 19.
    Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47, 2280–2292 (2014).  https://doi.org/10.1016/J.PATCOG.2014.01.005 CrossRefGoogle Scholar
  20. 20.
    Schmidt, B., Wang, L.: Automatic work objects calibration via a global–local camera system. Robot Comput. Integr. Manuf. 30, 678–683 (2014).  https://doi.org/10.1016/J.RCIM.2013.11.004 CrossRefGoogle Scholar
  21. 21.
    Crivellaro, A., Rad, M., Verdie, Y., Yi, K.M., Fua, P., Novel, Lepetit V.A.: Representation of parts for accurate 3D object detection and tracking in monocular images. IEEE Int. Conf. Comput. Vis. 2015, 4391–4399 (2015).  https://doi.org/10.1109/ICCV.2015.499 Google Scholar
  22. 22.
    López-Fernández, D., Madrid-Cuevas, F.J., Carmona-Poyato, A., Muñoz-Salinas, R., Medina-Carnicer, R.: A new approach for multi-view gait recognition on unconstrained paths. J. Vis. Commun. Image Represent. 38, 396–406 (2016).  https://doi.org/10.1016/J.JVCIR.2016.03.020 CrossRefGoogle Scholar
  23. 23.
    Dhall, A., Chelani, K., Radhakrishnan, V., Krishna, K.M.: LiDAR-Camera Calibration using 3D-3D Point correspondences (2017)Google Scholar
  24. 24.
    Munoz-Salinas, R.: ARUCO: a minimal library for Augmented Reality applications based on OpenCv (2012)Google Scholar
  25. 25.
    Guo, H., Zhu, D., Mordohai, P.: Correspondence estimation for non-rigid point clouds with automatic part discovery. Vis. Comput. 32(12), 1511–1524 (2016)CrossRefGoogle Scholar
  26. 26.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Gr. 9, 3–15 (2003).  https://doi.org/10.1109/TVCG.2003.1175093 CrossRefGoogle Scholar
  27. 27.
    Schroeder, W., Martin, K., Lorensen, B., Kitware, I.: The visualization toolkit : an object-oriented approach to 3D graphics. Kitware (2006)Google Scholar
  28. 28.
    Rusu, R.B., Cousins, S.: 3D is here: point Cloud Library (PCL). IEEE Int. Conf. Robot. Autom. 2011, 1–4 (2011).  https://doi.org/10.1109/ICRA.2011.5980567 Google Scholar
  29. 29.
    Park, S., Guo, X., Shin, H., Qin, H.: Surface completion for shape and appearance. Vis. Comput. 22(3), 168–180 (2006)CrossRefGoogle Scholar
  30. 30.
    Qt Company. Qt for developers by developers|Cross-platform development. https://www.qt.io/developers/ (2016). Accessed 4 May 2018
  31. 31.
    Siemens Product Lifecycle Management Software Inc. Siemens NX 1973. https://www.plm.automation.siemens.com/en/products/nx/ (2018). Accessed 4 May 2018
  32. 32.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Class. Cartogr. pp. 15–28. Wiley, Wiley, Chichester.  https://doi.org/10.1002/9780470669488.ch2
  33. 33.
    Siemens Documentation: Overview of Programmer’s Guide. https://docs.plm.automation.siemens.com/tdoc/nx/10/nx_api#uid:index_nxopen_prog_guide:id1142156:purpose (n.d). Accessed 4 May 2018
  34. 34.
    Morhart, M., Tredget, E.E., Jarman, A.T.A., Ghahary, A.: Wrist fractures and dislocations: Background, epidemiology, Etiology. http://emedicine.medscape.com/article/1285825-overview#a5 (n.d.). Accessed 4 May 2018
  35. 35.
    Davidson, S.: Grasshopper (algorithmic modeling for Rhino). http://www.grasshopper3d.com/ (2015). Accessed 4 May 2018
  36. 36.
    McNeel, R.: Grasshopper–algorithmic modeling for Rhino 2010. http://www.grasshopper3d.com/. Accessed 4 May 2018
  37. 37.
    Brackett, D., Ashcroft, I., Hague, R.: Topology Optimization for Additive Manufacturing, pp. 348–362. University of Texas, Austin (2011)Google Scholar
  38. 38.
    Powerful and Easy-to-use FEA and Optimization for Design Engineers|solidThinking Inspire 2018 (n.d.). https://solidthinking.com/inspire2018.html. Accessed 4 May 2018
  39. 39.
    Ata STR. ABS-M30, THE 3D PRINTING SOLUTIONS COMPANY. http://global72.stratasys.com/~/media/Main/Files/Material_Spec_Sheets/MSS_FDM_ABSM30_0517a_Web.pdf (n.d). Accessed 4 May 2018
  40. 40.
    F123 Series Printers|Stratasys http://www.stratasys.com/3d-printers/f123 (n.d.). Accessed 4 May 2018
  41. 41.
    Zhong, Y.: Key techniques for 3D garment design. Comput. Technol. Text. Appar., Elsevier; pp. 69–92.  https://doi.org/10.1533/9780857093608.2.69 (2011)
  42. 42.
    Joneja, A., Tam, A., Jing, F.: Draping 2D patterns onto 3D surfaces. Proc. ASME Des. Eng. Tech. Conf. 3, 363 (2003)Google Scholar
  43. 43.
    Mesuda, Y., Inui, S., Horiba, Y.: Virtual draping by mapping. Comput. Ind. 95, 93–101 (2018).  https://doi.org/10.1016/J.COMPIND.2017.11.004 CrossRefGoogle Scholar
  44. 44.
    Zhang, X., Fang, G., Dai, C., Verlinden, J., Wu, J., Whiting, E., Wang, C.C.: Thermal-comfort design of personalized casts. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 243–254. ACM (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Francesco Buonamici
    • 1
  • Rocco Furferi
    • 1
  • Lapo Governi
    • 1
  • Simone Lazzeri
    • 2
  • Kathleen S. McGreevy
    • 2
  • Michaela Servi
    • 1
  • Emiliano Talanti
    • 2
  • Francesca Uccheddu
    • 1
  • Yary Volpe
    • 1
    Email author return OK on get
  1. 1.Department of Industrial Engineering of Florence (DIEF)University of FlorenceFlorenceItaly
  2. 2.Children’s Hospital A. Meyer of FlorenceFlorenceItaly

Personalised recommendations